The PASCAL Visual Object Classes (VOC) Challenge
Everingham, M. , Van Gool, L. , Williams, C. K. I. , Winn, J. and Zisserman, A.
International Journal of Computer Vision (2010)
PDF

Bibtex source

@Article{Everingham10,
   author = "Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.",
   title = "The Pascal Visual Object Classes (VOC) Challenge",
   journal = "International Journal of Computer Vision",
   volume = "88",
   year = "2010",
   number = "2",
   month = jun,
   pages = "303--338",
}

Abstract

The PASCAL Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection. This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension.


This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.