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Abstract

This paper presents a powerful framework for generic object recognition. Boosting is used as an underlying
learning technique. For the first time a combination of various weak classifiers of different types of descriptors
is used, which slightly increases the classification result but dramatically improves the stability of a classifier.
Besides applying well known techniques to extract salient regions we also present a new segmentation method -
“Similarity-Measure-Segmentation”. This approach delivers segments, which can consist of several disconnected
parts. This turns out to be a mighty description of local similarity. With regard to the task of object categorization,
Similarity-Measure-Segmentation performs equal or better than current state-of-the-art segmentation techniques.
In contrast to previous solutions we aim at handling of complex objects appearing in highly cluttered images.
Therefore we have set up a database containing images with the required complexity. On these images we obtain
very good classification results of up to87% ROC-equal error rate. Focusing the performance on common databases
for object recognition our approach outperforms all comparable solutions.

Index Terms

Adaboost, cognitive vision, object categorization, object localization.

I. I NTRODUCTION

GENERIC object recognition is a difficult computer vision problem. Although various solutions exist
for solving the recognition problem on common datasets, all these datasets have limitations that

lower their complexity and make them differ from the idea of being really generic. Focusing on the
generic case means considering datasets containing images with highly cluttered background showing
various arbitrary instances of the object category. This addresses one of the main problems faced by
a visual categorization or recognition system: the difficulty of high intra class variability and the need
for generalization across variations in the appearances of objects of the same category. Different images
of persons, for example, can change in various aspects. They can represent different persons and the
appearance of each particular person will change because of various imaging parameters, like viewpoint,
distance or illumination. A vision system for object recognition is therefore facing the view of an object
of a certain category that is different from all other views seen before with the demand of using the
learned experience to categorize the novel image. Another difficulty for learning an object category is the
naturally high demand of supervision. Learning an object category from images with high background
clutter, where the objects occur anywhere in the image is hard for artificial vision systems. Using a pile
of images with persons and another pile without persons it should be obvious for the system what is the
object of interest in these sets. This extraction of relevant information is naturally for humans but not for
artificial vision systems. Facing these aspects, the human cognitive recognition system is so powerful, that
comparable results in computer vision are hard to achieve. Humans learn somehow the wide spectrum of
possible intra class variability from experience. Hence object categorization is more complex for artificial
systems than specific object recognition.
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It is obvious that the less constraints an approach needs (on object appearance, background clutter,
partial occlusion) to achieve acceptable results, the more generic it becomes. Each object category might
have its specific description which represents it optimally. Consequently using one kind of model or
representation for all object categories would hardly lead to a generic solution. This brings up the idea
of combining various representations of objects to form a generic classifier for each category.

In this article we present a powerful framework for generic object recognition. It is based on an approach
for learning objects in still images which allows the use of flexible and extendible sets of descriptions
of objects and object categories. Objects should be recognized even if they appear at different scales,
shown from different perspective views on highly textured backgrounds. The images are represented by
salient regions described by various invariant description methods. Our new learning method is based on
Boosting [12].

After a discussion of related work in section II, section III gives a detailed overview of our approach and
explains our dataset and the difference to existing databases. In section IV we present the various methods
of region detection used in our framework focusing on the new Similarity-Measure-Segmentation. The
local descriptors of these regions are presented in section V followed by our general learning approach
described in detail in section VI. The combination of various kinds of description vectors in the learning
procedure is also shown in this section. Section VII describes our experimental setup, presents experimental
results and compares them with other approaches for object recognition. Section VIII concludes with a
discussion and an outlook on further extensions.

II. RELATED WORK

Taking a closer look at the extensive body of literature on object recognition each approach has its
specific limitations. In general, common approaches use image databases which show the object of interest
at prominent scales and with only little variation in pose (e.g. [8], [2]). Others pre-segment the object
manually (e.g. [7], [34]) to reduce complexity. Subsequently, we discuss some of the most relevant and
most recent results related to our approach and point out the differences to our method. One main extension
of our approach to the existing solutions is that we do not use just one technique of information extraction,
but a combination of various methods.

Boosting was successfully used by Viola and Jones [35] as the learning ingredient for a fast face detector.
The weak hypotheses were the thresholded average brightnesses of collections of up to four rectangular
regions. In our approach we experiment with much larger sets of features to be able to perform recognition
of a wider class of objects on more complicated images. Schneiderman and Kanade [31] also use Boosting
to improve an already complex classifier. Contrary to them, we are using Boosting to combine rather simple
classifiers by selecting the most discriminative features. Additionally, they undertake rather specific object
recognition as they train each object from different viewpoints.

Also a wide variety of other learning techniques has been used to solve the task of object recognition.
For example, Agarwal and Roth [2] use Winnow as the underlying learning algorithm for the recognition
of cars from side views. For this purpose, images are represented as binary feature vectors. The bits of
such a feature vector can be seen as the result of weak classifiers, one weak classifier for each position in
the binary vector. For learning, it is required that the output of all weak classifiers is calculated a priori. In
contrast, Boosting only needs to find the few weak classifiers which actually appear in the final classifier.
This substantially speeds up learning, if the space of weak classifiers carries a structure which allows the
efficient search for discriminative weak classifiers. A simple example is a weak classifier which compares
a real valued feature against a threshold. For Winnow, one weak classifier needs to be calculated for each
possible threshold a priori1, whereas for Boosting the optimal threshold can be determined efficiently
when needed. To obtain their classification results, Agarwal and Roth crop out the object manually to
reduce complexity.

1More efficient techniques for Winnow like using virtual threshold gates [21] do not improve the situation much.
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Walraven et al. [36] use Support Vector Machines combined with local features for object recognition.
But they perform a rather specific recognition task on images of lower complexity without any background
clutter.

A different approach to object class recognition is presented by Fergus et al. [8]. The authors use
a generative probabilistic model for objects built as constellations of parts. Using an EM-type learning
algorithm a very good recognition performance is achieved. They extend their constellation model in [9] to
include heterogenous parts. The parts and their constellations can now be learned without supervision and
from cluttered images. We use a model-free approach and propose Boosting as a very different learning
algorithm compared with EM.

Another object recognition approach was introduced by Dorko and Schmid [7]. It is based on the
construction and selection of scale-invariant object parts. These parts are subsequently used to learn a
classifier. The authors show a robust detection under scale changes and variations in viewing conditions,
but in contrast to our approach, the objects of interest are manually pre-segmented. This dramatically
reduces the complexity of distinguishing between relevant patches on the objects and background clutter.

Ferrari et al. [10] present an approach where object recognition works even if aggravating factors like
background clutter, scale variations or occlusion are very strong. Based on a model of a specific object,
an iterative approach is applied. Starting with a small initial set of corresponding features good results
are obtained. While this work presents a powerful concept of an iterative “active exploration” approach,
it is based on a model for a specific object which is learned from non-cluttered representations of the
object. Furthermore, this approach seems to be restricted to specific object recognition.

A new possibility of describing objects for categorization is introduced by Thureson and Carlsson
in [34]. It is based on histograms of qualitative shape indices. These indices are calculated from the
combinations of triplets of location and gradient directions of the samples. The object categories are
represented by a set of representation images. Each new image is categorized for that region where the
inner product of the representation vectors is smallest. This approach is based on a matching of image
representations, whereas we compute a classifier from all the training images. This solution also requires
a manual pre-segmentation of the relevant object to reduce complexity.

Carbonetto et al. [4] present an approach for contextual object recognition based on a segmented image.
They attach labels to image regions and learn a model of spatial relationships between them. We also use
image representations by means of segments. But with our model-free solution we can cope with more
complex images.

III. M ETHOD AND DATA

To learn a category, the learning algorithm is provided with a set of labeled training images. A
positive label indicates that a relevant object appears in the image. The objects are not pre-segmented,
the location in the image and the viewpoint are unknown. As output, the learning algorithm delivers a
final classifier (further on also called “final hypothesis”) which predicts if a relevant object is present in a
new image. Having such a classifier, the localization of the object in the image should be straightforward.
The learning procedure in our framework (see figure 1) works as follows: The labeled images are put
through a preprocessing step that transforms them to greyscale. Then two kinds of regions are detected.
On one hand regions of discontinuity are extracted. These are quadratic regions around salient points,
extracted with various existing methods. On the other hand we extract regions of homogeneity which
are obtained by using two different image segmentation methods: we compare the well known Mean-
Shift-Segmentation [6] with Similarity-Measure-Segmentation. This new segmentation method allows
the segmentation of non-connected regions and performs equally or better than several other methods
with respect to object recognition in our experiments. In the next step, we calculate local descriptors
of regions of discontinuity and homogeneity. Having various descriptions of the content of an image
allows us to combine various kinds of regions with various descriptions in one learning step. We use
Boosting [12] as learning technique. Boosting is a technique for combining several weak classifiers into a
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final strong classifier. The weak classifiers are calculated on different weightings of the training examples
to emphasize different aspects of the training set. Since any classification function can potentially serve
as a weak classifier we can use classifiers based on arbitrary and inhomogeneous sets of image features.
A further advantage of Boosting is that weak classifiers are calculated when needed instead of calculating
unnecessary weak hypotheses a priori. The result of the training procedure is saved as the final hypothesis.
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Fig. 1. Our framework for generic object recognition starts from a labeled image database. Regions of discontinuity and homogeneity are
extracted and described by local descriptors forming a feature vector. Learning by AdaBoost [12], leads to a final hypothesis which consists
of several weak hypotheses. The solid arrows show the training cycle, the dotted ones the testing procedure.

Existing datasets for object recognition used by other research groups (e.g. [8], [2]) show the objects
with just small variations in scale and objects are generally viewed at similar poses. Figure 2 shows
some examples of the Caltech database of the categories cars(rear), motorbikes and airplanes. To aim at a
solution for a more generic object recognition we were in need of images having many different instances
of the object category at various locations in the image, at different scales, viewed from several positions
and with high background clutter. Therefore we have built up our own more complex database. This
database2 (further on termed GRAZ-01) that was used in [28], contains 450 images of category person
(P), 350 of category bike (B) and 250 of category “counter-class” (N, meaning it contains no bikes and
no persons). Figure 3 shows some example images of each category.

Based on our localization results (see section VII-C), which reveal that certain methods tend to empha-
size context (i.e. the final classifier contains many background features), we have set up a second database2

(further on termed GRAZ-02). This database has been carefully balanced with respect to background, so
that similar backgrounds occur for all categories. Furthermore, we increased the complexity of the object
appearances and added a third category of images. The database contains 311 images of category person
(P), 365 of category bike (B), 420 of category cars (C) and 380 of a counter-class (N, meaning it contains
no bikes, no persons and no cars). Figure 4 shows some example images.

To be comparable with existing well known approaches we also carried out experiments on the same
database like Fergus et al. [8]3 (further on termed Caltech).

Regarding different region detection and description techniques shown in figure 1, we experimentally

2available at http://www.emt.tugraz.at/∼pinz/data/
3available at

http : //www.robots.ox.ac.uk/ ∼ vgg/data/
and Cars (Side) from
http : //l2r.cs.uiuc.edu/ ∼ cogcomp/index research.html.
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Fig. 2. Some examples of the Caltech database, categories cars(rear), motorbikes and airplanes, used in [8].

Fig. 3. Some example images from our database GRAZ-01. The first column shows examples of the category bikes (B), in the second
column there are images of the category person (P). The rightmost column shows images of the counter-class (N). All these images were
correctly classified using our approach (for details see section VII).

evaluate two kinds of methods. First we perform various experiments for one region extraction with one
kind of local description technique. Not all possibilities are tried out in this work, but we focus on methods
with high performance based on results reported in [27] and [28]. The second method is the combination
of various kinds of region detections with different description techniques in one learning step (using the
“Combination” module shown in figure 1).

The performance is measured by the commonly used receiver-operating-characteristic(ROC)-equal error
rate. This error rate is calculated as the percentage of the area under the ROC-curve (for details see [2]).

IV. REGION DETECTION

Using all the information of the whole image leads to a very high computational complexity of the
learning procedure. Therefore, a reduction of information is necessary. This can be achieved using salient
information extraction techniques. But we also want to be capable of learning many object category without
restrictions to shape or appearance of the objects. Each category might be characterized by different
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Fig. 4. Some example images from our database GRAZ-02. The first column shows examples of the category bikes (B), in the second
column there are images of the category person (P) followed by images of the category cars (C) in the third column. The rightmost column
shows some images of the counter-class (N). The complexity increased compared with the database GRAZ-01. Also the appearances of the
background of the images (category and counter-class) are rather balanced. All these images were correctly classified using our approach
(for details see section VII).

descriptors. For some objects, salient point techniques might be the best way to extract their essential
information. For other objects, segments might be more relevant for recognition. Hence, an approach for
generic object recognition would be limited if the images were described by just one method. While all
existing approaches (e.g. [9], [2], [34]) use just one kind of description method, we combine multiple
information extraction methods to capture the essential characteristics of various object categories (e.g.
persons, cars, etc). The increased complexity is justified by the gain of generalization in our approach.
There are two main branches of information extraction in our framework. The first one is to select regions
of discontinuity. We use various well known interest point extraction techniques and simply crop out a
region (of a scale dependent size) around each point. The other branch is the extraction of regions of
homogeneity. This means information reduction by a representation through image segments. We use our
new Similarity-Measure-Segmentation and compare it with Mean-Shift-Segmentation.

A. Regions of Discontinuity

As mentioned, regions of discontinuity are regions around interest points. There is a variety of work
on interest point detection at fixed (e.g. [17], [18], [33], [37]), and at varying scales (e.g. [19], [23],
[24]). Based on the evaluation of interest point detectors by Schmid et al. [29], we decided to use the
scale invariant Harris-Laplace detector [23] and the affine invariant interest point detector [24], both by
Mikolajczyk and Schmid. In addition we use Lowe’s DoG (difference of Gaussian) keypoint detector [20]
which is strongly related to SIFTs as local descriptors.

The scale invariant Harris-Laplace detector finds interest points by calculating a scaled version of the
second moment matrixM . It localizes points where the Harris-MeasureH = det(M) − αtrace2(M)
is above a certain thresholdth. The characteristic scale for each of these points is obtained by the
construction of a Laplacian scale-space. The affine invariant interest point detector uses again the second
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moment matrix and a Laplacian scale-space. Additionally, an iterative algorithm is used which converges
to affine invariant points by modifying the location, scale and neighborhood of each point [24].

To normalize the regions around these two kinds of interest points we have to consider illumination,
scale and, in case of the affine invariant detector, affine transformations. For the size normalization, we
have decided to use quadratic patches with a side length ofl pixels. We extract a window of sizew = 6·σI

(ajar to the value used by Mikolajczyk and Schmid in [24]) whereσI is the characteristic scale of the
interest point delivered by the interest point detector. Scale normalization is achieved by smoothing and
subsampling in cases ofl < w and by linear interpolation otherwise. In order to obtain affine invariant
patches the values of the transformation matrix resulting from the affine invariant interest point detector
are used to normalize the window to the shape of a square before size normalization.

For illumination normalization we use Homomorphic Filtering (see e.g. [14], chapter 4.5). The Homo-
morphic Filter is based on an image formation model where the image intensityI(x, y) = i(x, y)r(x, y) is
modeled as the product of illuminationi(x, y) and reflectancer(x, y). Elimination of the illumination part
leads to a normalization. This is achieved by applying a Fast Fourier Transform to the logarithm image
ln(I). Skipping the low Fourier coefficients leads to a separation of the reflectance component (high-pass
filer). After the inverse transformation and an exponentiation we get the desired normalized patch.

Lowe introduced an interest point detector which is invariant to translation, scaling and rotation and
is minimally affected by small distortions and noise [20]. We use the binary from D. Lowe that already
exports the local descriptors of a circular region with a radius of 8 pixels (and 8 orientation planes) around
the detected interest points.

B. Regions of Homogeneity

Regions of homogeneity can either be regions with a limited difference of intensity values, or regions
with homogeneous texture. These homogeneous regions are found with region-based segmentation al-
gorithms. There is an extensive body of literature that deals with region-based segmentation algorithms
and their applications. Many of them (e.g. [5] and [32]) are trying to split images into background
and prominent foreground objects. Barnard et al. [3] use these segmentation methods for learning object
categories. The advantage of this approach is the reduced complexity, because there are only a few regions
in each training image. The drawback is the difficulty to describe large and complex regions. Therefore,
we prefer to use algorithms, which deliver more and smaller regions. These regions can be sufficiently
well represented by simple descriptors (see section V).

We have developed a new algorithm - “Similarity-Measure-Segmentation” (first presented in [13]) -
which is described in detail subsequently. We compare its performance for object categorization with the
well known Mean-Shift algorithm by Comaniciu and Meer [6]. In our framework we use the code from
“The Robust Image Understanding Laboratory”4.

1) Similarity-Measure-Segmentation:Similar to other segmentation algorithms (see [5] and [32]), we
calculate several features for each pixel of the image, in a first processing step. But in contrast to others,
we use a similarity measure (see equation 1) to describe pixel similarity for segmentation purpose.

SM =

∑n
i=1 aie

− SCi
2πσi

∑n
i=1 ai

0 < SM ≤ 1. (1)

This similarity is used to split images into regions.SCi defines an element of the Similarity-Criteria
vector SC, in other words the distance of two pixels corresponding to a defined pixel feature. The
parametersai can be set between0 and1 to change the weight of the Similarity-Criterion.σi is used to

4Available at
http : //www.caip.rutgers.edu/riul/research/code.html.
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change the sensitivity of the different Similarity-Criteria. For example on images with a small intensity
variation, a smallσi is used to enhance the sensitivity of the intensity Similarity-Criterion.

We are extracting two kinds of features. On one hand color, intensity, brightness and the position of
a pixel, which consider only a single pixel. And on the other hand Local Binary Patterns (see [26]),
high-pass and Wavelets (see [1]), which consider a certain neighborhood of a pixel. The first group of
features are easy and fast to calculate but can only be used for regions of homogeneity without texture.
The second group is much more complex to calculate, especially Wavelets, but delivers certain texture
information.

Equation 2 shows the definition for one similarity criterion elementSCi, whereP1i and P2i are the
two pixels andi is the index of the used feature. We use the Euclidean distance to calculate the elements
of SC.

SCi = ‖P1i − P2i‖ (2)

Our Similarity-Measure grouping algorithm consists of the following steps:
1) Take any unlabeled pixel in an image, define a new regionRj and label this pixel withRLj.
2) Calculate the Similarity Measure to all other unlabeled pixels in the neighborhood, defined by a

radiusr.
3) Each pixel that has a similarity above a thresholdt (0 < t ≤ 1) is also labeled withRLj. Go back

to step2 for each newly labeled pixel.
4) If there aren’t any newly labeled pixels, start again with step1, until all pixels have a region number

RLk.
5) Search all regions smaller than a minimum valueregmin, and merge each region with the nearest

region larger thanregmin (same process as the Mean-Shift segmentation [6]).
The radiusr can be varied between 1 andrmax. The maximum radiusrmax depends on the position

sensitivityσx and on the thresholdt:

rmax = ln(
t∑n

i=1 ai

(n− 1))(−2πσx) (3)

If we user = 1, we have a region growing algorithm using the Similarity-Measure as homogeneity
function. If we set the radiusr > 1 (generallyr = rmax), we have a new segmentation method, that delivers
not connected “regions”Rj. While this is in contradiction to the classical definition of segmentation,
treating theseRj as entities for the subsequent learning process has shown recognition results, which are
superior to results based on connected regions. We consider this new way of looking at disconnected
segments a possibility to aggregate larger entities which are well suited to describe local homogeneities.
These descriptions maintain salient local information and suppress spurious information which would lead
to oversegmentation in other segmentation algorithms.

Figure 5 shows two detail views segmented with Similarity-Measure and with Mean-Shift segmentation.
The first example shows a rail, that disappears with mean-shift segmentation but is maintained with
Similarity-Measure segmentation. The rail is disconnected, because of some similarities between rail
parts and the background, in both algorithms. The Mean-Shift algorithms merges the maintaining rail
parts to the background considering its two constraints, that regions have to be connected and must be
larger thanregmin. The Similarity-Measure algorithm treats the disconnected parts as one region, which
is larger thanregmin. The second example shows a part of a bush, that is split into11 small regions
with Mean-Shift segmentation, and5 disconnected regions surrounded by2 large regions with Similarity-
Measure segmentation. The results are desirable for our purpose because it turns out that a representation
by not connected regions leads to a better performance of our categorization approach.
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Fig. 5. Two detail views of the “Grazer Clocktower” segmented with Similarity-Measure segmentation (images in the middle) and mean-shift
segmentation (images on the right).

TABLE I

THIS TABLE GIVES AN OVERVIEW OF THE DESCRIPTION METHODS IN OUR FRAMEWORK AND THEIR DIMENSION(FOR REGION SIZE OF

16× 16pixels).

- Regions of discontinuity Regions of homogeneity
Method Subsampled grayval.Basic moments Moment Invariants SIFTs Intensity distribution Invariant moments

Dimension 128 10 9 128 7 7

V. L OCAL DESCRIPTION

For the learning step, each region has to be represented by some local descriptors. For these description
methods we use different techniques for the two region types.

For regions of discontinuity, local descriptors have been researched quite well (e.g. [11], [20], [30], [15]).
We selected four local descriptors. Our first descriptor is simply a vector of all pixels in a patch subsampled
by two. The dimension of this vector isl

4

2
, which is rather high and increases computational complexity.

As a second descriptor we use intensity momentsMa
Ipq

=
∫ ∫

ω i(x, y)axpyq dx dy with a as the degree and
p + q as the order, up to degree 2 and order 2. Without using the moments of degree 0 we get a feature
vector of dimension 10. This reduces the computational costs dramatically. In view of the performance
evaluation of local descriptors done by Mikolajczyk and Schmid [25] we took SIFTs (see [20]) as a third
and Moment Invariants (see [15]) as a fourth choice. In [25] the SIFTs outperformed the other descriptors
in nearly all tests and the Moment Invariants were average for all considered aspects.

According to [15] we selected first and second order Moment Invariants. We chose four first order
affine and photometric Invariants. Additionally we took all five second order Invariants described in [15].
Since the Invariants require two contours, the whole region (square patch) is taken as one contour and
rectangles corresponding to one half of the patch are used as a second contour. All four possibilities of the
second contour are calculated and used to obtain the Invariants. The dimension of the Moment Invariants
description vector is 9.

As shown in [20] the description of the patches with SIFTs is done by multiple representations in
various orientation planes. A local descriptor with a dimension of 128 is obtained.

We use two groups of descriptors for the representation of regions of homogeneity. The first group
describes the intensity or the color values and their distribution in a region. It contains their mean,
variance, coefficient of variation, smoothness, skewness, kurtosis, and the gray value energy (for details
see [16]). The second group contains invariant moments (see [22]), which are invariant with respect to
scaling, rotation and translation. They are calculated from basic moments of inertia. Using basic moments
of order up to three results in seven invariant moments for this description method.

Table I gives an overview of the various description methods in our framework and their dimension.
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Input: Training images(I1, `1), . . . , (Im, `m).
Initialization: Set the weightsw1 = · · · = wm = 1.

For t = 1, ..., T
1) Get a weak hypothesisht in respect to the weightsw1, . . . , wm from the Weak-Hypotheses-Finder.

2) Calculateε =

∑m

k=1,ht(Ik) 6=`k
wk∑m

k=1
wk

.

3) Chooseβt =
√

1−ε
ε

.
4) Updatewk ← wk · β−`k·ht(Ik) for k = 1, . . . , m.

Output the final hypothesis (classifier):

H (I) = sign

(
T∑

t=1

(ln βt)ht(I)

)

Fig. 6. Shows the standard AdaBoost algorithm [12].

VI. L EARNING MODEL

Our learning model is based on the AdaBoost algorithm [12]. This algorithm was adapted by adding
the possibility of putting different weights on positive and negative training images. We set up a new
Weak-Hypotheses-Finder that selects the most discriminant description vector in each iteration of the
AdaBoost algorithm. This Weak-Hypotheses-Finder is extended to be capable of using various description
methods in one learning step.

We want to learn a classifier for recognizing objects of a certain category in still images. For this
purpose, the learning algorithm delivers a classifier that predicts whether a given image contains an object
from this category or not. As training data, labeled images(I1, `1), . . . , (Im, `m) are provided for the
learning algorithm wherèk = +1 if Ik contains a relevant object and`k = −1 if Ik contains no relevant
object. The learning algorithm delivers a functionH : I 7→ ˆ̀ which predicts the label of imageI (see
figure 6).

A. AdaBoost

To calculate this classification functionH we use an adaptation of the classical AdaBoost algorithm [12].
AdaBoost puts weightswk on the training images and requires the construction of a weak hypothesish
which has some discriminative power with respect to these weights, i.e.

m∑

k=1,h(Ik)=`k

wk >
∑

k=1,h(Ik)m 6=`k

wk (4)

such that more images are correctly classified than misclassified, relative to the weightswk. Such a
hypothesis is called weak since it needs to satisfy only a very weak requirement. The process of putting
weights and constructing a weak hypothesis is iterated for several roundst = 1, . . . , T , and the weak
hypothesesht of each round are combined into the final hypothesisH (for details see figure 6).

In each roundt the weightwk is decreased if the prediction forIk was correct (ht(Ik) = `k), and
increased if the prediction was incorrect. Different to the standard AdaBoost algorithm we vary the
calculation of the factorβt which AdaBoost uses for its weight update after each iteration. We add a
possibility to trade off precision and recall. We set

βt =





√
1−ε

ε
· η if `k = +1 and `k 6= ht(Ik).√

1−ε
ε

else
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with ε being the error of the weak hypothesis in this round andη as an additional weight factor to control
the update of falsely classified positive examples.

Here two general comments are in place. First, it is intuitively quite clear that weak hypotheses with
high discriminative power — with a large difference of the sums in equation (4) — are preferable, and
indeed this is shown in the convergence proof of AdaBoost [12]. Second, the adaptation of the weights
wk in each round performs some sort of adaptive decorrelation of the weak hypotheses: if an image was
correctly classified in roundt, then its weight is decreased and less emphasis is put on this image in
the next round. As a result, this yields quite different hypothesesht and ht+1

5, and it can be expected
that the first few weak hypotheses characterize the object category under consideration quite well. This
is particularly interesting when a sparse representation of the object category is needed.

Obviously AdaBoost is a very general learning technique for obtaining classification functions. To
adapt for a specific application, suitable weak hypotheses have to be constructed. For the purpose of
object recognition we need to extract suitable description vectors from images and use these descriptors
to construct the weak hypotheses. Since AdaBoost is a general learning technique we are free to choose any
type of description method we like, as long as we are able to provide an effective Weak-Hypotheses-Finder
which returns discriminative weak hypotheses based on this set of descriptors. The chosen description
vectors should be able to represent the content of images, at least with respect to the object category
under consideration.

Since we can choose several types of description vectors, we represent an imageI by a set of pairs
R (I) = {(τi, v)} whereτi denotes the type of a descriptor andv denotes a value of this descriptor, typically
a vector of reals. Then for AdaBoost a weak hypothesis is constructed from the representationsR (Ik),
labels`k, and weightswk of the training images.

B. Weak-Hypotheses-Finder

Using one type of description vector at a time is the basic functionality of our learning algorithm.
Using various description methodsτi separately simplifies our learning algorithm to a case where we
represent an imageIk by a set of descriptorsR (Ik) = {vf}, f = 1, . . . , Fk, where vf denotes the
values of the descriptor as real vector, andFk is the number of extracted description vectors in an
image Ik (see figure 7 for an explanation of this Weak-Hypotheses-Finder using just one description
method). The weak hypotheses for AdaBoost are calculated from these descriptors. For object recognition,
we have chosen weak hypotheses which indicate if certain description vectors appear in images. That
is, a weak hypothesish has to select a valuev and a similarity thresholdθ. The thresholdθ decides
if an image contains a description vectorvf that is sufficiently similar tov. The similarity between
vf and v is calculated by the Mahalanobis distance for Moment Invariants, basic intensity moments
and the descriptors for the regions of homogeneity. This distance is chosen because it is measured in
terms of standard deviations from the mean of the training samples. For SIFTs and the subsampled
grayvalues the Euclidean Distance is used. This simpler measure is sufficient in this case because of
the bounded domain of the description vector values between0 and 255. The Weak-Hypotheses-Finder
(figure 7(4)) searches for the optimal weak hypotheses — given labeled representations of the training
images(R (I1), `1), . . . , (R (Im), `m) and their weightsw1, . . . , wm calculated by AdaBoost — among all
possible description vectors and corresponding thresholds (see figure 7(5)).

The main computational burden is the calculation of the distances betweenvf andv (see figure 7(2)),
since they both range over all description vectors that appear in the training images. We arrange the
minimum distances from each description vector to each image in a matrix, where we sort the distances
in each column. Given these sorted distances, which can be calculated prior to Boosting, the remaining
calculations are relatively inexpensive. In detail, we first calculate the optimal threshold for the description
vectorvk,f in time O(m) by scanning through the weightsw1, . . . , wm in the order of the distancesdk,f,j.

5In fact AdaBoost sets the weights in such a way thatht is not discriminative with respect to thenew weights. Thusht+1 is in some
sense oblivious to the predictions ofht.
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Input: Labeled representations(R (Ik), `k), k = 1, . . . , m, R (Ik) = {(vk,f |f = 1, . . . , Fk)(wk0)}.
(1): Distance functions:Let d(·, ·) be the distance in respect to the description vectors in the training
images.
(2): Minimal distance matrix: For all description vectorsvk,f and all imagesIj calculate the minimal
distance betweenvk,f and description vectors inIj,

dk,f,j = min
1≤g≤Fj

d(vk,f , vj,g) .

(3): Sorting: For eachk, f let πk,f (1), . . . , πk,f (m) be a permutation such that

dk,f,πk,f (1) ≤ · · · ≤ dk,f,πk,f (m) .

(4): Select best weak hypothesis (Scanline):For all description vectorsvk,f calculate over all images
Ij

max
s

s∑

j=1

wπk,f (j)`πk,f (j) .

and select the description vectorvk,f where the maximum is achieved.
(5): Select thresholdθ: With the positions where the scanline reached a maximum sum the threshold
θ is set to

θ =
dk,f,πk,f (s) + dk,f,πk,f (s+1)

2
.

Fig. 7. Explanation of the Weak-Hypotheses-Finder using just one description method.

Subsequently we search over all description vectors. This calculation of the optimal weak hypothesis takes
O(F ·m) time, with F being the average number of features in an image.

To give an example of the total computation times we use a dataset of 150 positive and 150 negative
images. Each image has an average number of approximately 400 description vectors. After preprocessing,
using SIFTs one iteration of Boosting requires about ten seconds computation time on a P4 (2.4GHz PC).

C. Weak-Hypotheses-Finder with Multiple Description Methods

In an outlook in [28] we discussed the possibility of using multiple description methods in one learning
procedure. The challenge of the learning algorithm is now not only the selection of the most discriminant
description vector with respect to the current weighting but also the choice of a description typeτ . Using
these multiple description methods at a time changes the algorithm in the following way. An imageIk

is now represented by a list of description methods(τk,l, vk,f ), f = 1, . . . , Fk ∧ l = 1, . . . , n, whereτk,l

denotes the type of a feature,n denotes the number of the different used description methods,vk,f denotes
again its value as real vector, andFk is the number of extracted descriptors in an image. Therefore, a
weak hypothesish has to select a feature typeτ and again its valuev, and a similarity thresholdθ. Details
how the Weak-Hypotheses-Finder changes when using multiple description methods are given in figure 8.

Obviously the computational complexity is increasing with every additional kind of feature used.

VII. E XPERIMENTS AND RESULTS

The experimental evaluation is split into three parts. The first part (subsection VII-A) specifies the
parameter settings. Our classification results are discussed in detail in subsection VII-B, showing that this
approach clearly outperforms current state-of-the-art techniques. The benefits of using multiple features
in one learning procedure are also pointed out there. Subsection VII-C presents a qualitative evaluation
of localization performance. It shows the distribution of learned information that is directly related with
the object, and the learned contextual information.
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Input: Labeled representations(R (Ik), `k), k = 1, . . . ,m, R (Ik)
∧
= {(τk,f , vk,f )|f =

1, . . . , Fk, (wk0)}.
(1): Distance functions:Let dτ (·, ·) be the distance in respect to the description vectors of typeτ in
the training images.
(2): Minimal distance matrix: For all description vectors(τk,f , vk,f ) and all imagesIj calculate the
minimal distance betweenvk,f and description vectors inIj,

dk,f,j = min
1≤g≤Fj :τj,g=τk,f

dτk,f
(vk,f , vj,g) .

(3): Sorting: For eachk, f let πk,f (1), . . . , πk,f (m) be a permutation such that

dk,f,πk,f (1) ≤ · · · ≤ dk,f,πk,f (m) .

(4): Select best weak hypothesis (Scanline):For all description vectors(τk,f , vk,f ) calculate over all
imagesIj

max
s

s∑

j=1

wπk,f (j)`πk,f (j) .

and select the description vector(τk,f , vk,f ) where the maximum is achieved.
(5): Select thresholdθ: With the positions where the scanline reached a maxium sum the threshold
θ is set to

θ =
dk,f,πk,f (s) + dk,f,πk,f (s+1)

2
.

Fig. 8. Explanation of the Weak-Hypotheses-Finder using various description methods at a time.

A. Parameter Setting

The results were obtained using the same set of parameters for each experiment. For the regions
of discontinuity (scale and affine invariant interest point detector), we used a threshold of cornerness
th = 30000 to reduce the number of salient points. Also the points with the smallest characteristic scale
were skipped (the neglectable influence of these points was shown in [27]). The side of the squared
region size around the scaled and the affine interest points was normalized tol = 16 pixels. Vector
quantization was used to reduce the number of interest points obtained with the difference of Gaussian
(DoG) point detector [20]. Initially we took all points into account but then we clustered the SIFT
description vectors (8x8 pixels with 8 orientation planes) of each image. As a clustering algorithm we
used “k-means”. The number of cluster centerscl was set to100 (for the experiments on the GRAZ-02
database we usedcl = 3006) using a maximum number of 40 rounds in the k-means. For the extraction
of the regions of homogeneity we used a minimum region sizeregmin = 50 for Mean-Shift-Segmentation
and Similarity-Measure-Segmentation. We used the standard parameter set of the available binary for
Mean-Shift-Segmentation. For the Similarity-Measure-Segmentation, we used a combination of intensity,
position and high-pass. We introduceσc for the intensity-,σx for the position- andσt for the high-pass
similarity criteria.σc depends on the contrast of the image. It is proportional to the variance of the image
σ2

I . The exact parameters used were:σc =
σ2

I

128
· 3, σx = 1.2, σt = 0.5 and a threshold oft = 0.83. With

these parameters we obtainrmax = 6. The learning procedure was run using the following parameters:
T = 100, η = 1.0. The ROC curves can either be obtained by varying the additional weight factorη or
by testing the classifier varying the threshold for classification (both result in the same ROC-equal-error
rate).

6this numbers were experimentally evaluated and depend on the image complexity, for details see??
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Fig. 9. The diagram shows the influence of an additional factorη for the weights of incorrectly positive classified examples. The recall
increases faster than the precision drops until a factor of1.8 (for the GRAZ-01 dataset with affine invariant regions and Moment Invariants).
The optimal value of this factor varies on different datasets.

Figure 9 shows the influence of the additional weight factor on recall and precision. In this test on the
bike category of the GRAZ-01 dataset, with affine invariant interest point detection and Moment Invariants,
the optimal value is atη = 1.8. Up to this η the recall increases faster than the precision drops. This
optimal point depends on the description type and the dataset. For an evaluation with ROC-equal-error
rate this factor does not influence the result.

The power of our new Similarity-Measure-Segmentation with respect to object categorization is shown
in table II. It outperforms Mean-Shift-Segmentation in all cases, except for category bikes of GRAZ-02
with regmin = 250, where they performed nearly equal. Thus, for the remaining experiments we focused
on regions of homogeneity obtained by Similarity-Measure-Segmentation.

TABLE II

RELATIVE ERROR ON DATASET CARS(REAR) (CALTECH DATABASE) AND BIKES (OF GRAZ-01 AND GRAZ-02). WE COMPARE

SIMILARITY -MEASURE-SEGMENTATION WITH MEAN-SHIFT-SEGMENTATION. WE USED TWO DIFFERENT MINIMUM REGION SIZES OF

regmin = 50 AND regmin = 250. IN ALL CASES, EXCEPT FOR CATEGORY BIKES OFGRAZ-02 WITH regmin = 250, THE OBJECT

CATEGORIZATION WORKS BETTER WITHSIMILARITY -MEASURE-SEGMENTATION.

Cars(rear) (Caltech)
Method regmin = 50 regmin = 250
Mean-Shift 15 18.3
Similarity-M. 8.3 11.7
Bikes (GRAZ-01)
Method regmin = 50 regmin = 250
Mean-Shift 18.3 23.3
Similarity-M. 15 20
Bikes (GRAZ-02)
Method regmin = 50 regmin = 250
Mean-Shift 26.0 25.0
Similarity-M. 25.6 25.3

B. Classification Results

1) Reference Dataset:To be comparable with existing approaches we first evaluated our method on the
Caltech database. We took regions of homogeneity extracted with the Similarity-Measure-Segmentation
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TABLE III

THE TABLE SHOWS THE PERFORMANCE ON THECALTECH DATABASE. THE RESULTS IN THE FIRST COLUMN(1) ARE OBTAINED USING

REGIONS OF HOMOGENEITY EXTRACTED WITH THESIMILARITY -MEASURE-SEGMENTATION AND THE DESCRIPTION METHOD BASED

ON THE INTENSITY DISTRIBUTION. THE SECOND COLUMN(2) SHOWS THE RESULTS USING THE AFFINE INVARIANT INTEREST POINT

DETECTION AND MOMENT INVARIANTS .

Dataset Reg. hom. (1)Reg. dis. (2)Fergus et al. [8]

Motorbikes 94.3 92.2 92.5

Airplanes 97.5 88.9 90.2

Faces 99.9 93.5 96.4

Cars(side) 99.9 83.0 88.5

Cars(rear) 99.9 91.1 90.3

and the description method based on the intensity distributions. We trained this combination on 60 images
containing the object as positive training images and 60 images from the counter-class as negative training
images. The tests were carried out on 60 new images half belonging to the learned class and half to the
counter-class7. The results are shown in the first column of table III. The second column shows the results
of our approach obtained with regions of discontinuity extracted with the affine invariant interest point
detector and Moment Invariants as description method. Here we trained this combination on 100 images
containing the object as positive training images and 100 images from the background set as negative
training images. We took 100 test images half belonging to the category and half not. The comparison
with the results of Fergus et al. in the last row of table III shows that our best results are superior to
the classification performances of Fergus et al. for all categories, even if we train with fewer images.
Especially Similarity-Measure-Segmentation based region detection yields a very significant improvement
compared to the results of Fergus et al.

2) GRAZ-01 dataset:Having demonstrated the good performance of our approach on a reference dataset
(Caltech), we proceeded with experiments on our first database with higher complexity, the GRAZ-01
database. We first took 100 images from the category bike (or person) as positive training images and
100 images of the counter-class (N) as negative training set. For the tests we used 100 new images
half containing the object (bike or person) and half not containing the object (category N). On this set
of images we performed three experiments: first we used regions of discontinuity extracted with the
affine invariant interest point detection combined with Moment Invariants as description method. In the
second experiment we used regions of discontinuity obtained with the DoG keypoint detector combined
with the SIFT description method. The number of cluster centers of the k-means was set to 100 in this
experiment. Finally we carried out an experiment using regions of homogeneity with intensity distributions
as description method. Table IV shows the ROC-equal error rates of each experiment for the categories
bike and person. Considering the complexity of the data the results are very good. The best classification
is obtained using Similarity-Measure-Segmentation (SM) described by intensity distributions for category
bike and with DoG points and SIFTs for persons. This result shows that each category of objects is
best represented by a specific description method. Figure 10 shows the recall-precision curves of these
experiments.

All images presented previously in figure 3 were categorized correctly. Figure 11 gives examples of
incorrectly classified images. In both cases the images of the counter-class result from an experiment
where we trained the category bikes. For the classification of these example images we used an average
classifier withη = 1.0 and a classification threshold of0.0 for the testing.

3) GRAZ-02 dataset:After these experiments on the GRAZ-01 dataset we evaluated our approach
using the GRAZ-02 dataset. We took a training set consisting of 150 images of the object category as

7The images are chosen sequentially from the database. This means e.g. for this experiment we took the first 90 image from the images
of an object class and took out every third image for the test set.
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TABLE IV

THIS TABLE SHOWS A COMPARISON OF THEROC-EQUAL ERROR RATES ACHIEVED WITH THREE SPECIFIC COMBINATIONS: AFFINE

INVARIANT INTEREST POINT DETECTION WITHMOMENT INVARIANTS , DOG KEYPOINT DETECTION COMBINED WITHSIFT AS

DESCRIPTION METHOD ANDSIMILARITY -MEASURE-SEGMENTATION (SM) DESCRIBED BY INTENSITY DISTRIBUTIONS.

Dataset Moment Invariants SIFTs SM

Bikes 76.5 86.5 89.6
Persons 68.7 80.8 59.1
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Fig. 10. shows the recall precision curves of our approach. We compare Moment Invariants and the affine invariant interest point detection,
SIFTs and DoG interest point detection, and Similarity-Measure-Segmentation (SM) described by intensity distributions on the GRAZ-01
database. (a) shows the results for category bike and (b) shows the recall-precision curves for the category person.

positive images and 150 of the counter-set as negative images. The tests were carried out on 150 images
half belonging to the class and half not. Table V shows the classification performance of various specific
combinations of region extractions and description types. The affine invariant interest point detection with
Moment Invariants or Basic Moments as local descriptors performs best except for the category bikes
where all combinations achieve good results.

Again, all the images in figure 4 were categorized correctly while images in figure 12 represent examples,
where the classification fails. These images where classified with average parameters ofη = 1.0 and a
classification threshold of0.0 for the testing.

A qualitative visual comparison of figures 3 and 11 with figures 4 and 12 immediately reveals the need
of further explanation. Although the overall categorization results are impressive, some difficult images are
categorized correctly, while the method fails for other (sometimes “easier”) ones. What are the limitations
of the approach? Why are certain images categorized incorrectly? Why do certain methods perform better
than others? Especially, why is Similarity-Measure-Segmentation a clear winner on the Caltech dataset
and on GRAZ-01 for the category bikes, still good on the GRAZ-02 bikes and persons, but quite poor on
persons from GRAZ-01 and cars from GRAZ-02? We try to answer some of these questions in subsection
VII-C in the light of localization abilities of the various detectors.

4) Combination: Subsequently, we show experiments performed by using more than one type of
the various region extractions with a description method in one learning step. We did three kinds of
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Fig. 11. Some example images from our database GRAZ-01 that were incorrectly classified in an average test case. The first column shows
examples of the category bikes (B) classified as image not containing a bike, in the second column are images of the category person (P)
classified as images not containing a person. The rightmost column shows images of the counter-class-set (N) that were classified as bikes
(B).

TABLE V

THIS TABLE SHOWS THEROC-EQUAL-ERROR RATES OF VARIOUS SPECIFIC COMBINATIONS OF REGION EXTRACTIONS AND

DESCRIPTION METHODS ON THE THREE CATEGORIES OF THEGRAZ-02 DATASET. THE FIRST AND THE SECOND COLUMN ARE

OBTAINED WITH THE AFFINE INVARIANT INTEREST POINT DETECTION ANDMOMENT INVARIANTS OR BASIC INTENSITY MOMENTS AS

LOCAL DESCRIPTOR. THE THIRD ROW WAS ACHIEVED USINGDOG KEYPOINT DETECTION AND SIFTS AS DESCRIPTION METHOD USING

300 CLUSTER CENTERS WITHIN THE K-MEANS CLUSTERING. THE LAST COLUMN SHOWS THE RESULTS OF EXPERIMENTS PERFORMED

USING SIMILARITY -MEASURE-SEGMENTATION AND DESCRIPTION VIA INTENSITY DISTRIBUTIONS.

Dataset Moment Invariants Basic Moments SIFTs SM

Bikes 73.2 83.2 83.7 82.5
Persons 87.2 85.1 79.4 84.0

Cars 74.5 74.1 64.4 60.5

combinations8. The first part are the regions obtained with the affine invariant interest point detection,
described with Moment Invariants. We combine it with regions achieved through DoG keypoints described
by SIFTs (see table VI (a)), regions extracted with the affine invariant interest point detector described
with basic intensity moments (see table VI (b)) and regions of homogeneity obtained by the Similarity-
Measure-Segmentation and described with intensity distributions (see table VI (c)). While the results of the
combinations show just slight enhancement over the individual best result, these experiments clearly show
that the combination of several methods can perform significantly better than a certain individual method
(cf. ROC-equal error rates of85.8 vs. 73.2 for bikes). The main benefit is that a use of the combination
adds a higher reliability to a classifier. For some categories one combination of a region extraction and a
description method performs better than others. Using various specific combinations in one learning step
ensures a final classifier that achieves better results than the best classifier used separately.

8Combining more of our methods is just marginally improving the results.
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Fig. 12. Some example images from our database GRAZ-02 that were incorrectly classified in an average test case. The first column shows
examples of the category bikes (B), in the second column there are images of the category person (P) followed by images of the category
cars (C) in the third column. All were classified as counter-class-images. The rightmost column shows some images of the counter-class-set
(N). These are examples that were classified as bikes (B).

TABLE VI

THIS TABLE SHOWS THEROC-EQUAL ERROR RATES OF SPECIFIC COMBINATIONS OF REGION EXTRACTIONS AND DESCRIPTION

METHODS SEPARATED AND THEIR PERFORMANCE IF THEY ARE COMBINED IN ONE LEARNING STEP. THE FIRST VALUE IS ALWAYS FOR

THE MOMENT INVARIANTS . THE SECOND COLUMN SHOWS THE RESULTS OF EITHER BASIC INTENSITY MOMENTS(A) OR SIFTS (B) OR

REGIONS OF HOMOGENEITY DESCRIBED THROUGH INTENSITY DISTRIBUTIONS(C). THE LAST COLUMN SHOWS THE ACHIEVED

PERFORMANCE USING THE COMBINATION OF THE TWO METHODS.

Dataset Mom. Inv. method 2 combination

Cars 74.5 74.1 (a) 74.7
Bikes 73.2 83.7 (b) 85.8

Persons 87.2 84.0 (c) 87.4

C. Localization Performance

To discuss the localization of the information learned by our approach, we first evaluated the experiments
shown in the previous subsection with respect to the localization of the hypotheses. Taking a closer look
at the regions of homogeneity that are learned to achieve the classification results of table III, we found
out, that only 25% to 50% are located on the object. The remaining hypotheses do not learn the object
category directly, but focus on contextual (background) information for this object category. Figure 13
shows some examples of regions of homogeneity selected as weak hypotheses from the Caltech dataset.
The first row shows four hypotheses of the category plane. The first three regions are located on the
plane whereas the last one is not. The second row shows four hypotheses from the final classifier of the
category cars(rear). Again the right most hypothesis is not located on the object. If the object category of
the dataset has specific background appearances that do not occur in the images of the counter-class it is
in the nature of our learning approach to select also background information. Thus, this combination of
object information and contextual information gives us a good classification performance. On the other
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Fig. 13. Some examples of weak hypotheses of regions of homogeneity. The first row shows four hypotheses from the final classifier of
the category airplane. In the second row weak hypotheses of the category cars(rear) are shown.

(a) (b)

Fig. 14. (a) shows nine examples of regions of discontinuity selected for the final classifier of the category motorbike. (b) shows nine
examples of regions of discontinuity selected for the final classifier of the category airplane.

hand, object localization is not straight forward if we use regions of homogeneity on images with specific
background appearances.

Figure 14(a) shows examples of regions of discontinuity learned as weak hypotheses for the category
motorbikes. The final classifier was trained using affine invariant interest points and Moment Invariants as
local description method. The regions shown are the raw image data cropped out around the interest point
before any affine, illumination and size normalization. Using the same settings, figure 14(b) shows weak
hypotheses of the final classifier of the category airplanes. With this specific combination we obtain 80%
to 90% of the weak hypotheses located on the object. Even if this classifier is more related to the object
(instead of containing contextual information), the classification result in table III is lower compared to
using regions of homogeneity.

Focusing on the percentage of contextual information that is learned, compared to the information
directly related to the object, we took a closer look at the classifiers shown in table IV based on the GRAZ-
01 dataset. We observe an average of 60% of the weak hypotheses containing contextual information if
we use Similarity-Measure-Segmentation combined with intensity distributions. For DoG interest points
described by SIFTs, 50% of the hypotheses contain contextual information. Using the affine invariant
interest point detector with moment invariants or basic intensity moments decreases this percentage to
30%.

Table VII shows the percentage of weak hypotheses of the final classifier for each category of GRAZ-02
that are not located on the object. Again looking at table V with respect to these localization performances
shows that affine invariant interest point detection and Moment Invariants are most stable in the classi-
fication performance directly related to the object. Figure 15 shows examples of weak hypotheses used
for the final classifier of the category bike (GRAZ-02) with various description methods. It shows which
information is learned and how the learned classifier represents a category of objects. The hypotheses
that contain background information (e.g. fig. 15 first row last column) are often also important for our
classification. As most of the bikes occur associated with streets, weak hypotheses representing asphalt
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TABLE VII

THIS TABLE SHOWS THE PERCENTAGE OF THE WEAK HYPOTHESES THAT ARE NOT LOCATED ON THE OBJECT. HERE WE USED THE SAME

COMBINATIONS AS IN TABLE V FOR THEGRAZ-02 DATASET.

Dataset Moment Invariants Basic Moments SIFTs SM

Bikes 21 30 39 55
Persons 23 45 54 74

Cars 56 63 52 84

Fig. 15. Shows examples of weak hypotheses used for the final classifier of the category bike (GRAZ-02). The first row shows hypotheses
based on the test with regions of homogeneity and intensity distributions. The middle row shows regions extracted with the affine invariant
interest point detector and described by Moment Invariants. Examples of weak hypotheses obtained at the experiment with DoG keypoint
detection and SIFTs are shown in the last row. These are the raw image patches before any normalization steps are carried out.

contain highly relevant contextual information.
In summary, these investigations lead to the following conclusions: The Caltech database shows the

object of interest at very prominent scales, locations, and in very specific poses. While these constraints
are significantly relaxed with the GRAZ-01 database, the counter-class images are quite different, which
enables the algorithm to take background information (context) into account. It turns out, that homo-
geneity regions (Similarity-Measure-Segmentation) and SIFTs tend to emphasize context more than other
discontinuity based region detectors. This is strongly supported by our results on the GRAZ-02 database,
which is balanced with respect to the background (i.e. similar backgrounds for class and counter-class
images).

VIII. D ISCUSSION ANDOUTLOOK

We have presented a novel approach for the recognition of object categories in still images of high
complexity. Our system uses several steps of region extraction and local description methods, which have
been previously described, as well as a new segmentation technique, and succeeds on rather complex
images with a lot of background structure. We have set up new databases where objects are shown in
substantially different poses and scales, and in many of the images the objects (bikes, persons or cars)
cover only a small portion of the whole image. The main contributions of the paper, however, lie in the
new concept of learning, the possibility of combining various types of image features and the presentation
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of a new segmentation technique (Similarity-Measure-Segmentation). We use Boosting as the underlying
learning technique and combine it with a Weak-Hypotheses-Finder. In addition to several other advantages
of this approach, which have already been mentioned, we want to emphasize that this approach allows the
formation of very diverse visual features into a final hypothesis. This use of several specific combinations
of region extraction and description methods in one learning step makes a classifier more reliable over a
whole range of different object categories. Furthermore, experimental comparison on the Caltech database
shows that our approach performs better than state-of-the-art object categorization on simpler images.
The new Similarity-Measure-Segmentation turns out to be a powerful method to describe whole image
contents.

We are currently investigating extensions of our approach in several directions. Maybe the most obvious
one is the addition of more features to our image analysis. This includes not only other local descriptors, but
also new regional features and geometric feature distributions. To reduce the complexity of our approach
we are considering a reduction of the number of description vectors with a solution that is better fittting
than simple k-means clustering. Also the localization problem will be investigated in more detail. The
different performances of various combinations in this framework leads to the need of a loop within
the learning procedure. There a first unsupervised localization step is followed by the actual learning
procedure. The new Similarity-Measure-Segmentation should also be used for image retrieval in further
experiments.

As a further step we will use spatial relations between features to improve the accuracy of our object
detector. To handle the complexity of many possible relations between features, we will use the features
constructed in our current approach (with parameters set for high recall) as starting points. Boosting will
again be the underlying method for learning object representations as spatial combinations of features.
This will allow the construction of weak hypotheses of discriminative spatial relations.
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