
The PASCAL Visual Object Classes Challenge

2006 Development Kit

Mark Everingham

February 14, 2006

1 Challenge

The goal of this challenge is to recognize objects from a number of visual object
classes in realistic scenes (i.e. not pre-segmented objects). There are ten object
classes:

• bicycle, bus, car, motorbike

• cat, cow, dog, horse, sheep

• person

There are two tasks:

1.1 Classification Task

For each of the ten object classes predict the presence/absence of at least one
object of that class in a test image. The output from your system should be
a real-valued confidence of the object’s presence so that an ROC curve can be
drawn.

1.2 Detection Task

For each of the ten classes predict the bounding boxes of each object of that class
in a test image (if any). Each bounding box should be output with an associated
real-valued confidence of the detection so that a precision/recall curve can be
drawn.

1.3 Image Sets

There are four sets of images provided, for use in both the classification and
detection tasks.

train: Training data

val: Validation data (suggested). The validation data may be used as addi-
tional training data (see below).

trainval: The union of train and val.

1



Table 1: Statistics of the image sets
train val trainval test

img obj img obj img obj img obj

Bicycle 127 161 143 162 270 323 268 326
Bus 93 118 81 117 174 235 180 233
Car 271 427 282 427 553 854 544 854
Cat 192 214 194 215 386 429 388 429

Cow 102 156 104 157 206 313 197 315
Dog 189 211 176 211 365 422 370 423

Horse 129 164 118 162 247 326 254 324
Motorbike 118 138 117 137 235 275 234 274

Person 319 577 347 579 666 1156 675 1153
Sheep 119 211 132 210 251 421 238 422
Total 1277 2377 1341 2377 2618 4754 2686 4753

test: Test data. The test set is not provided in the development kit. It will be
released in good time before the deadline for submission of results.

Table 1 summarizes the number of objects and images (containing at least
one object of a given class) for each class and image set. The data has been split
into 50% for training/validation and 50% for testing. The distributions of images
and objects by class are approximately equal across the training/validation and
test sets. In total there are 5,304 images, containing 9,507 annotated objects.

1.3.1 Ground Truth Annotation

Objects of the ten classes listed above are annotated in the ground truth. For
each object, the following annotation is present:

• class: the object class e.g. ‘car’ or ‘bicycle’

• bounding box: an axis-aligned rectangle specifying the extent of the
object visible in the image.

• view: ‘frontal’, ‘rear’, ‘left’ or ‘right’. The views are subjectively marked
to indicate the view of the ‘bulk’ of the object. Some objects have no view
specified.

• ‘truncated’: an object marked as ‘truncated’ indicates that the bounding
box specified for the object does not correspond to the full extent of the
object e.g. an image of a person from the waist up, or a view of a car
extending outside the image.

• ‘difficult’: an object marked as ‘difficult’ indicates that the object is con-
sidered difficult to recognize, for example an object which is clearly visible
but unidentifiable without substantial use of context. Objects marked as
dificult are currently ignored in the evaluation of the challenge.

In preparing the ground truth, annotators were given a detailed list of guidelines
on how to complete the annotation. These are reproduced in Appendix A.

2



1.4 Competitions

Four competitions are defined according to the task and the choice of training
data: (i) taken from the VOC trainval data provided, or (ii) from any source
excluding the VOC test data provided:

No. Task Training data Test data
1 Classification trainval test
2 Classification any but VOC test test
3 Detection trainval test
4 Detection any but VOC test test

Any annotation provided in the VOC train and val sets may be used for
training, for example bounding boxes or particular views e.g. ’frontal’ or ’side’.
Participants are free to perform manual annotation on the training data if they
wish. Manual annotation of the test data to optimize algorithm performance is
not permitted.

In competitions 2 and 4, any source of training data may be used except
the provided test images. Researchers who have pre-built systems trained on
other data are particularly encouraged to participate. The test data includes
images from the Microsoft Research Cambridge object recognition database,
and “flickr” (www.flickr.com); these sources of images may not be used for
training. Participants who have acquired images from flickr for training must
submit them to the organizers to check for overlap with the test set.

For each competition, participants may choose to tackle all, or any subset
of object classes, for example “cars only” or “motorbikes and cars”.

1.5 Submission of Results

In contrast to the 2005 VOC challenge, ground truth for the test images will not
be released. Participants are therefore required to submit the raw output of their
classifier and detector implementations, rather than ROC and precision/recall
curves as in the 2005 challenge.

Results for each competition are to be submitted as text files. Details on the
submission procedure will be given at a later date. The file formats required for
the classification and detection tasks are described here:

1.5.1 Classification Results

For the classification task, a separate text file of results should be generated for
each competition (1 or 2) and each class e.g. ‘car’. Each line should contain
a single identifier and the confidence output by the classifier, separated by a
space, for example:

comp1_cls_val_car.txt:
000004 0.702732
000006 0.870849
000008 0.532489
000018 0.477167
000019 0.112426

3



Greater confidence values signify greater confidence that the image contains
an object of the class of interest. The example classifier implementation (sec-
tion 4.1) includes code for generating a results file in the required format.

1.5.2 Detection Results

For the detection task, a separate text file of results should be generated for each
competition (3 or 4) and each class e.g. ‘car’. Each line should be a detection
output by the detector in the following format:

<image identifier> <confidence> <left> <top> <right> <bottom>

where (left,top)-(right,bottom) defines the bounding box of the detected
object. The top-left pixel in the image has coordinates (1, 1). Greater confidence
values signify greater confidence that the detection is correct. An example file
excerpt is shown below. Note that for the image 000006, multiple objects are
detected:

comp3_det_val_car.txt:
000004 0.702732 89 112 516 466
000006 0.870849 373 168 488 229
000006 0.852346 407 157 500 213
000006 0.914587 2 161 55 221
000008 0.532489 175 184 232 201

The example detector implementation (section 4.2) includes code for generating
a results file in the required format.

1.6 Evaluation

Participants are expected to submit a single set of results per method employed.
Participants who have investigated several algorithms may submit one result per
method. Changes in algorithm parameters do not constitute a different method
– all parameter tuning must be conducted using the training and validation data
alone.

1.6.1 Classification Task

The classification task will be judged by the Receiver Operating Characteristic
(ROC) curve. The principal quantitative measure used will be the area un-
der curve (AUC). Example code for computing the ROC and AUC measure is
provided in the development kit.

Images which contain only objects marked as ‘difficult’ (section 1.3.1) are
currently ignored by the evaluation. The final evaluation may include separate
results including such “difficult” images, depending on the submitted results.

1.6.2 Detection Task

The detection task will be judged by the precision/recall curve. The principal
quantitative measure used will be the average precision (AP). Example code for
computing the precision/recall and AP measure is provided in the development
kit.

4



Detections are considered true or false positives based on the area of overlap
with ground truth bounding boxes. To be considered a correct detection, the
area of overlap ao between the predicted bounding box Bp and ground truth
bounding box Bgt must exceed 50% by the formula:

ao =
area(Bp ∩Bgt)
area(Bp ∪Bgt)

(1)

Example code for computing this overlap measure is provided in the develop-
ment kit. Multiple detections of the same object in an image are considered
false detections e.g. 5 detections of a single object is counted as 1 correct detec-
tion and 4 false detections – it is the responsibility of the participant’s system
to filter multiple detections from its output.

Objects marked as ‘difficult’ (section 1.3.1) are currently ignored by the
evaluation. The final evaluation may include separate results including such
“difficult” images, depending on the submitted results.

2 Development Kit Contents

The development kit is packaged in a single gzipped tar file containing code
and (this) documentation. The images, annotation, and lists specifying train-
ing/validation sets for the challenge are provided in a separate archive which
can be obtained via the VOC web pages.

3 Installation and Configuration

The simplest installation is achieved by placing the development kit and chal-
lenge databases in a single location. After untarring the development kit, down-
load the challenge image database and untar into the same directory, resulting
in the following directory structure:

VOCdevkit/ % development kit
VOCdevkit/VOCcode/ % PASCAL/VOC utility code
VOCdevkit/results/ % directory for your results
VOCdevkit/local/ % directory for example code
VOCdevkit/VOC2006/ImageSets % image sets
VOCdevkit/VOC2006/Annotations % annotation files
VOCdevkit/VOC2006/PNGImages % images

If you set the current directory in MATLAB to the VOCdevkit directory
you should be able to run the example functions example classifier and
example detector.

If desired, you can store the code, images/annotation, and results in separate
directories, for example you might want to store the image data in a common
group location. To specify the locations of the image/annotation, results, and
working directories, edit the VOCinit.m file, e.g.

% change this path to point to your copy of the PASCAL VOC data
VOCopts.datadir=’/homes/group/VOCdata/’;

5



% change this path to a writable directory for your results
VOCopts.resdir=’/homes/me/VOCresults/’;

% change this path to a writable local directory for the example code
VOCopts.localdir=’/tmp/’;

Note that in developing your own code you need to include the VOCdevkit/VOCcode
directory in your MATLAB path, e.g.

>> addpath /homes/me/code/VOCdevkit/VOCcode

4 Example Code

Example implementations for both the classification and detection tasks are
provided. The aim of these implementations is solely to demonstrate use of the
code in the development kit.

4.1 Example Classifier Implementation

The file example classifier.m contains a complete implementation of the clas-
sification task. For each VOC object class a simple classifier is trained on the
train set; the classifier is then applied to the val set and the output saved to a
results file in the format required by the challenge; a Receiver Operating Char-
acteristic (ROC) curve is plotted and the ‘area under curve’ (AUC) measure
displayed.

4.2 Example Detector Implementation

The file example detector.m contains a complete implementation of the de-
tection task. For each VOC object class a simple (and not very successful!)
detector is trained on the train set; the detector is then applied to the val set
and the output saved to a results file in the format required by the challenge;
a precision/recall curve is plotted and the ‘average precision’ (AP) measure
displayed.

5 Using the Development Kit

The development kit provides functions for loading annotation data. Example
code for computing ROC and precision/recall curves and viewing annotation is
also provided.

5.1 Image Set Files

The VOC2006/ImageLists/ directory contains text files specifying lists of images
for the train and val sets. Corresponding files for the test set will be provided
at a later date.

6



5.1.1 Image Sets

The files train.txt, val.txt, and trainval.txt list the image identifiers for
the corresponding image sets (training, validation, and training+validation).
Each line of the file contains a single image identifier. The following MATLAB
code reads the image list into a cell array of strings:

ids=textread(sprintf(VOCopts.imgsetpath,’imgset’),’%s’);

For a given image identifier ids{i}, the corresponding image and annotation
file paths can be produced thus:

imgpath=sprintf(VOCopts.imgpath,ids{i});
annopath=sprintf(VOCopts.annopath,ids{i});

Note that the image sets used are the same for all classes. For each competition,
participants are expected to provide output for all images in the test set.

5.1.2 Classification Task Image Sets

To simplify matters for participants tackling only the classification competition,
class-specific image sets with per-image ground truth are also provided. The
file <class> <imgset>.txt contains image identifiers and ground truth for a
particular class and image set, for example the file car train.txt applies to
the ‘car’ class and train image set.

Each line of the file contains a single image identifier and ground truth label,
separated by a space, for example:

000601 -1
000604 0
000610 1

There are three ground truth labels:

-1: Negative: The image contains no objects of the class of interest. A classi-
fier should give a ‘negative’ output.

1: Positive: The image contains at least one object of the class of interest.
A classifier should give a ‘positive’ output.

0: “Difficult”: The image contains only objects of the class of interest marked
as ‘difficult’. The output of the classifier for this image does not affect its
evaluation.

The “difficult” label indicates that all objects of the class of interest have
been annotated as “difficult”, for example an object which is clearly visible but
difficult to recognize without substantial use of context. Currently the eval-
uation ignores such images, contributing nothing to the ROC curve or AUC
measure. The final evaluation may include separate results including such “dif-
ficult” images, depending on the submitted results. Participants are free to
include these images in training as either positive or negative examples.

7



5.2 Development Kit Functions

5.2.1 VOCinit

The VOCinit script initializes a single structure VOCopts which contains options
for the PASCAL functions including directories containing the VOC data and
options for the evaluation functions (not to be modified).

The field classes lists the object classes for the challenge in a cell array:

VOCopts.classes={’bicycle’,’bus’,’car’,’cat’,’cow’,’dog’,...
’horse’,’motorbike’,’person’,’sheep’};

The field testset specifies the image set used by the example evaluation
functions for testing:

VOCopts.testset=’val’; % use validation data for development

Other fields provide, for convenience, paths for the image and annotation
data and results files. The use of these paths is illustrated in the example
classifier and detector implementations.

5.3 PASreadrecord(filename)

The PASreadrecord function reads the annotation data for a particular image
from the annotation file specified by filename, for example:

>> rec=PASreadrecord(sprintf(VOCopts.annopath,’000008’))

rec =

imgname: ’VOC2006/PNGImages/000008.png’
imgsize: [500 375 3]

database: ’The VOC2006 Database’
objects: [1x2 struct]

The imgname field specifies the path (relative to the main VOC data path) of
the corresponding image. The imgsize field specifies the image dimensions
as (width,height,depth). Objects annotated in the image are stored in the
struct array objects, for example:

>> rec.objects(1)

ans =

label: ’PAShorseTrunc’
orglabel: ’PAShorseTrunc’

bbox: [267 72 498 326]
polygon: []

mask: ’’
class: ’horse’
view: ’’

truncated: 1
difficult: 0

8



The label field specifies the PASCAL label for the object. For convenience,
the class field contains the corresponding VOC challenge class. The view field
contains the view: Frontal, Rear, Left (side view, facing left of image), Right
(side view, facing right of image), or an empty string indicating another, or
un-annotated view.

The bbox field specifies the bounding box of the object in the image, as
[left,top,right,bottom]. The top-left pixel in the image has coordinates
(1, 1).

The truncated field being set to 1 indicates that the object is “truncated”
in the image. The definition of truncated is that the bounding box of the object
specified does not correspond to the full extent of the object e.g. an image of
a person from the waist up, or a view of a car extending outside the image.
Participants are free to use or ignore this field as they see fit.

The difficult field being set to 1 indicates that the object has been anno-
tated as “difficult”, for example an object which is clearly visible but difficult to
recognize without substantial use of context. Currently the evaluation ignores
such objects, contributing nothing to the precision/recall curve. The final evalu-
ation may include separate results including such “difficult” objects, depending
on the submitted results. Participants may include or exclude these objects
from training as they see fit.

5.4 VOCroc(VOCopts,id,cls,draw)

The VOCroc function computes an ROC curve for the classification task. The
arguments id and cls specify the results file to be loaded, for example:

>> [fp,tp,auc]=VOCroc(VOCopts,’comp1’,’car’,true);

See example classifier for further examples. If the argument draw is true,
the ROC curve is drawn in a figure window. The function returns vectors of
false and true positive rates in fp and tp, and the area under curve (AUC)
measure in auc.

5.5 VOCpr(VOCopts,id,cls,draw)

The VOCpr function computes a precision/recall curve for the detection task.
The arguments id and cls specify the results file to be loaded, for example:

>> [rec,prec,ap]=VOCpr(VOCopts,’comp3’,’car’,true);

See example detector for further examples. If the argument draw is true, the
precision/recall curve is drawn in a figure window. The function returns vectors
of recall and precision rates in rec and prec, and the average precision measure
in ap.

5.6 viewanno(imgset)

The viewanno function displays the annotation for images in the image set
specified by imgset. The image set may be one of ’train’, ’trainval’ or
’val’, or include a class, for example ’car train’:

>> viewanno(’train’);
>> viewanno(’car_train’);

9



5.7 viewdet(id,cls,onlytp)

The viewdet function displays the detections stored in a results file for the
detection task. The arguments id and cls specify the results file to be loaded,
for example:

>> viewdet(’comp3’,’car’,true)

If the onlytp argument is true, only the detections considered true positives by
the VOC evaluation measure are displayed.

A Annotation Guidelines

This appendix lists the guidelines on annotation which were given to annotators.

A.1 Guidelines on what and how to label

What to label. All objects of the defined categories, unless:

• you are unsure what the object is.

• the object is very small (at your discretion).

• less than 10-20% of the object is visible.

If this is not possible because of too many objects, mark the image as bad.

Viewpoint. Record the viewpoint of the ’bulk’ of the object e.g. the body
rather than the head. Allow viewpoints within 10-20 degrees. If ambiguous,
leave as ’Unspecified’.

Bounding box. Mark the bounding box of the visible area of the object (not
the estimated total extent of the object). The bounding box should contain all
visible pixels, except where the bounding box would have to be made excessively
large to include a few additional pixels (< 5%) e.g. a car aerial.

Occlusion/truncation. If more than 15-20% of the object is occluded and
lies outside the bounding box, mark as ‘Truncated’. Do not mark as truncated
if the occluded area lies within the bounding box.

Image quality/illumination. Images which are poor quality (e.g. excessive
motion blur) should be marked bad. However, poor illumination (e.g. objects in
silhouette) should not count as poor quality unless objects cannot be recognized.

Clothing/mud/snow etc. If an object is ‘occluded’ by a close-fitting oc-
cluder e.g. clothing, mud, snow etc., then the occluder should be treated as
part of the object.

Transparency. Do label objects visible through glass, but treat reflections on
the glass as occlusion.

10



Mirrors. Do label objects in mirrors.

Pictures. Label objects in pictures/posters/signs only if they are photoreal-
istic but not if cartoons, symbols etc.

A.2 Guidelines on categorization

Car. Includes cars, vans, people carriers etc. Do not label where only the
vehicle interior is shown.

A.3 “Difficult” flag

Objects were marked as “difficult” by a single annotator. Only the image area
corresponding to the bounding box of each object was displayed and a subjective
judgement of the difficulty of recognizing the object was made. Reasons for
marking an object as difficult included small image area, blur, clutter, high
level of occlusion, occlusion of a very characteristic part of the object, etc.

11


