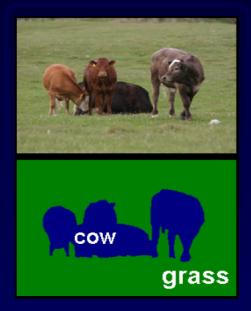


TextonBoost : Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation

J. Shotton*, J. Winn*, C. Rother*, and A. Criminisi*

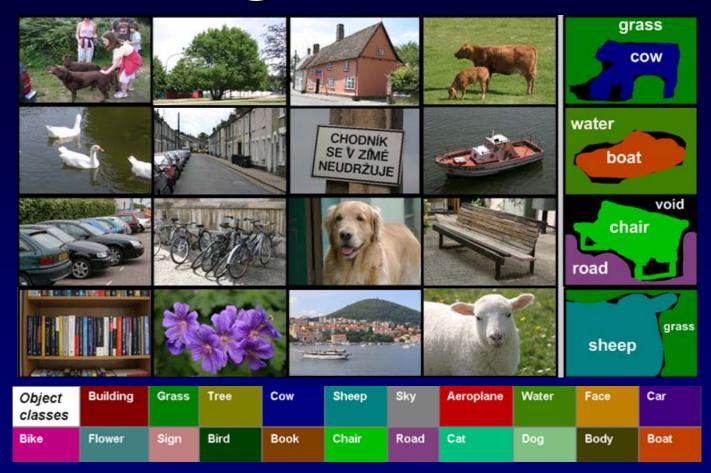

* University of Cambridge† Microsoft Research Ltd, Cambridge, UK

Introduction

- Simultaneous recognition and segmentation
 - Explain every pixel (dense features)
 - Appearance + shape + context
 - Exploit class generalities + image specifics

Contributions

- New low-level features
- New texture-based discriminative model
- Efficiency and scalability



Structure of Presentation

- The MSRC 21-Class Object Recognition Database
- New 'Shape Filter' Features
- Randomised boosting with Shared Features
- Adapting to the Pascal VOC Challenge

Image Databases

- MSRC 21-Class Object Recognition Database
 - 591 hand-labelled images (45% train, 10% validation, 45% test)

Corel (7-class) and Sowerby (7-class) [He et al. CVPR 04]

Sparse vs Dense Features

Successes using sparse features, e.g.
[Sivic et al. ICCV 2005], [Fergus et al. ICCV 2005], [Leibe et al. CVPR 2005]

But...

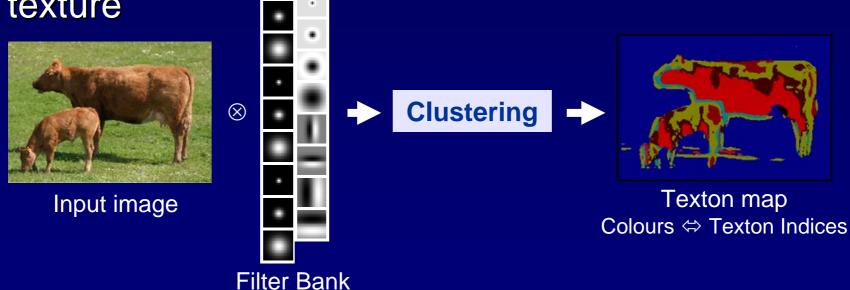
- do not explain whole image
- cannot cope well with all object classes

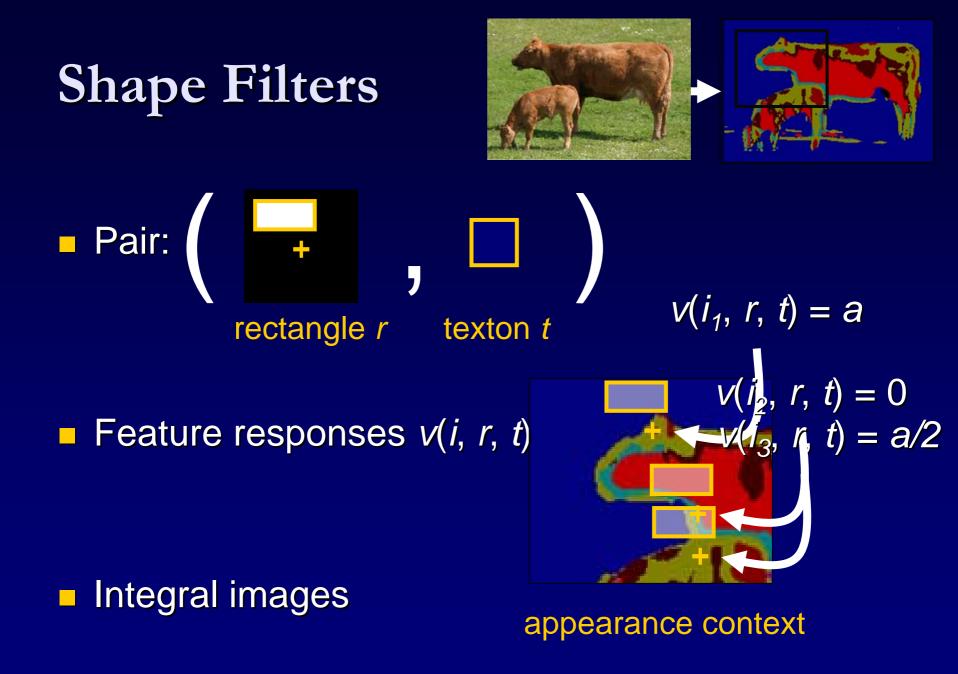
We use *dense* features

- 'shape filters'
- Iocal texture-based image descriptions

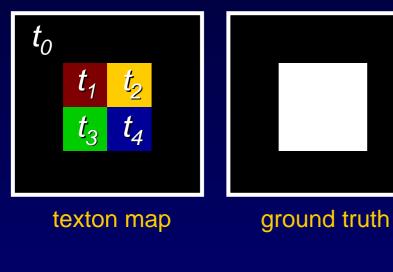
Cope with

 textured and untextured objects, occlusions, whilst retaining high efficiency

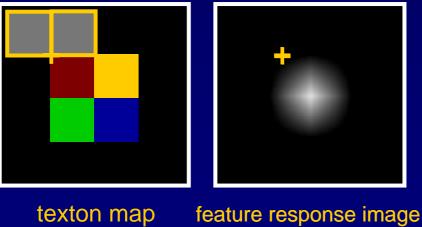

problem images for sparse features?


Textons

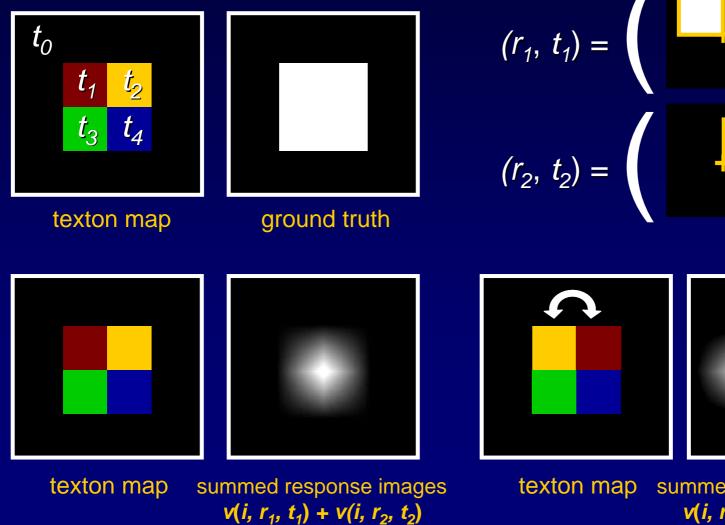
 Shape filters use texton maps [Varma & Zisserman IJCV 05]


[Leung & Malik IJCV 01]

Compact and efficient characterisation of local texture



Shape and Appearance


 $(r_1, t_1) =$ $(r_2, t_2) =$

v(i, r₂, t₂)

age

Shape and Appearance

texton map summed response images $v(i, r_1, t_1) + v(i, r_2, t_2)$

Shape-Texture Potentials

- Joint Boost algorithm
 - iteratively combines many shape filters
 - builds multi-class logistic classifier
- Resulting combination exploits:

Shape

Texture

Context (!)

Shape-Texture potentials:

 $\psi_i(c_i, \mathbf{x}; \boldsymbol{\theta}_{\psi}) = \log \widetilde{P}_i(c_i | \mathbf{x})$

shape-texture potentials

logistic classifier

[Torralba et al. CVPR 2004]

Feature Selection by Boosting

30 rounds

1000 rounds

2000 rounds

input image

inferred segmentation colour = most likely label **confidence** white = high entropy black = low entropy

Object classes	Building		Cow		Aeroplane		
Bike		Bird	Book	Road		Body	

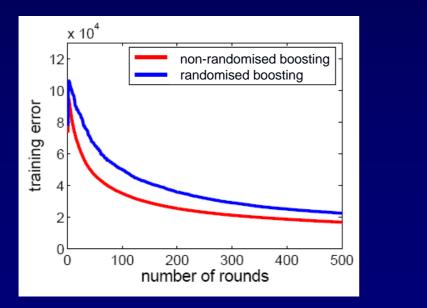
Feature Selection by Boosting

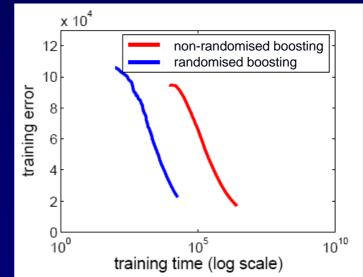
30 rounds

1000 rounds

2000 rounds

input image

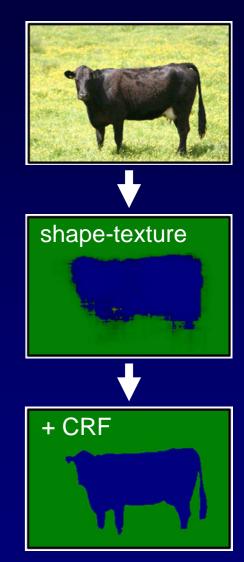

inferred segmentation colour = most likely label **confidence** white = high entropy black = low entropy


Object classes	Building	Grass	Tree	Cow	Sky	Aeroplane		
			Bird				Body	

Randomised Boosting

Avoid expensive search over all features

- only check random fraction (e.g. 0.3%) at each round
- over several thousand rounds probably try all possible features



Accurate Segmentation?

Shape-texture potentials alone
effectively recognise objects
but not sufficient for pixel-perfect segmentation

 Conditional Random Field (CRF) – see oral presentation tomorrow!

Adapting TextonBoost to the Pascal VOC Challenge

Training

Pascal training data is bounding boxes.

Need pixelwise labelling – use GrabCut based on bounding box (noisy labelling!):

Add 'background' label for non-object regions and train background class.

1 day training time (for 10 classifiers on 1/3

Results

bicycle

car

cow

dog

horse

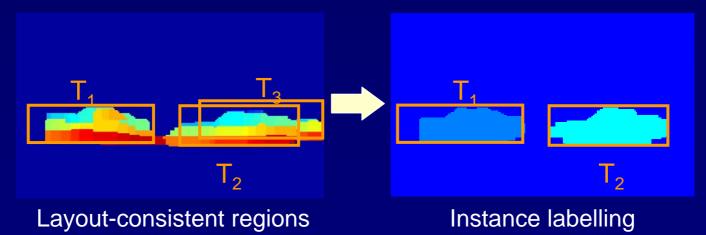
Classification (competition 1)

To give uncertainty measure, use only boosted softmax classifier and normalised sum of classifier over all image pixels.

Area under curve (AUC)

bicycle	bus	car	cat	cow	dog	horse	motorbike	person	sheep
0.873	0.86	0.88	0.822	0.85	0.76	0.75	0.844	0.715	0.86
	4	7		0	8	4			6

 Test time: 30sec image (three seconds per classifier)


VOC experiments by Jamie Shotton

Detection (competition 3)

Work in progress: scale/viewpoint invariant Layout Consisent Random Field

Input image

Detection (competition 3)

- Work in progress: scale/viewpoint invariant Layout Consisent Random Field
- Instead, used connected-components of most probable labelling (ignoring if <1000 pixels) and then computed normalised sum (as before)

Average precision (AP)

bicycle	bus	car	cat	cow	dog	horse	motorbike	person	sheep
0.249	0.13	0.25	0.151	0.14	<u>0.11</u>	0.09	0.178	0.030	0.13
	0	Λ		0	0	4			4

Suggestions for Pascal VOC 2007

Include other types of object classes:
unstructured classes (e.g. sky, grass)
semi-structured classes (e.g. building).

 Have small number of pixel-wise labelled images and include a segmentation competition.

Keep it hard!!!

TextonBoost code will be available shortly from http://mi.eng.cam.ac.uk/~jdjs2/