

VOC PASCAL 2007 Detection Challenge Oxford

Ondřej Chum Andrew Zisserman University of Oxford

Outline

- Representation
 - Exemplar model
- Learning
 - Detector
 - Classifier
- Detection
 - Discrimination
 - Non maxima suppression

O. Chum and A. Zisserman: An Exemplar Model for Learning Object Classes, CVPR'07

Representation

Spatial pyramid of histograms

- Sparse features
 - Hessian Laplace operator
 - SIFT descriptor
 - Vector quantization: k-means
 - Weighted histograms
 - Weights of visual words are proportional to their discriminability for class
 - Spatial and scale pyramid
- Edge directions
 - Berkeley edge detector

Model

Sparse

Dense

level

Visual Words Hessian Laplace + SIFT + k-means

Lazebnik et al CVPR 2006

Represented by a sparse vector encoding spatial and scale layout of visual words Represented by a histogram of edge directions encoding spatial layout

The distance between the histograms is measured by chi square

Spatial and Scale Pyramid

LEVEL 0

Spatial and Scale Pyramid

LEVEL 1

Spatial and Scale Pyramid

LEVEL 2

Histograms of Edge Directions

- Berkeley edge detector
- Spatial pyramid of edge directions
 - Using 8 directions
 - Gradient (contrast) flip invariant
 - Soft assignment

Histograms of Edge Directions

Histograms of Edge Directions

Learning

- A model for each aspect
- Visual words weights
 - Proportional to their relevance to the category (and aspect)
- Relation of features to object spatial layout
- SVM learning
 - Equal weights for all visual words

Learning Feature Weights

Vocabulary 3K

$D(w) \sim \frac{\# \text{class labelled images containing } w}{\# \text{images in database containing } w}$

G. Dorkó and C. Schmid: Selection of Scale-Invariant Parts for Object Class Recognition, ICCV 03

Learning feature – object relation

Position of visual word with respect to the object

We learn the position of the object with respect to the visual word

4K feature – object relations for different features and object positions

- features discriminative for the category
- similar relation in many exemplars (large clusters)

Used to generate hypotheses in the detection phase

SVM Classifier

Detection in the training images + ground truth annotation

Sparse features (Vocabulary 10K)

SVM

Edge orientation histograms

Negative examples

Overlap smaller than 20% with ground truth bounding box

Thousands of examples

Four Aspects

Frontal

Right

Four Aspects

Frontal

Unspecified

Rear

Detection

For every aspect of each category

- Hypothesis generation
- Hypothesis scoring
 - Average distance to N closest exemplars of given model
 - Thresholded
- Hypothesis classification
 - SVM on features and edge orientations
- Non-maxima suppression
 - Based on bounding box overlap

Detection

Hypotheses generation using a single feature to hypothesize a bounding box

Hypotheses scoring the exemplar model score is thresholded to prune the hypotheses

Non-maxima supression

SVM classification

Hypothesis Scoring

Exemplars from the training set

Motorbike

