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The main idea*
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* A Simple High Performance Approach to Semantic Segmentation, G. Csurka and F. Perronnin, BMVC 2008.
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Low-level representation

•

 

Patches are extracted on regular grids  at 5 different scales. 

•

 

Two types of features were considered:
–

 

Local RGB statistics (mean and standard deviation).
–

 

Local histograms of gradient orientations (SIFT-like).

•

 

In both cases the dimensionality was reduced to 50 (PCA).

•

 

They are handled independently and fused at late stages.
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Visual Vocabulary with a GMM

•

 

Modeling the visual vocabulary in the feature space with a GMM:

•

 

The parameters 

 

are estimated by EM algorithm maximizing the log-likelihood on 
the training data X={ xt

 

}
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* Adapted Vocabularies for Generic Visual Categorization, F. Perronnin, C. Dance, G. Csurka and M. Bressan, ECCV 2006.
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Visual Vocabulary with a GMM

•

 

Occupancy probability of a patch xt
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The Fisher Vector

•

 

Given a generative model with parameters 

 

(GMM)
–

 

we consider the gradient vector

–

 

and deduce the following formulas for the partial derivatives*:
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* Fisher Kernels on Visual Vocabularies for Image Categorization, F. Perronnin and C. Dance, CVPR 2007.
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The Fisher Vector (cont)

•

 

High level representation of the patch  (Fisher Vector)

Notes: 
–

 

the Fisher Vector describes in which direction the parameters of

 

the model 
should be modified to best fit the data

–

 

the gradient with respect to the mixture weights does not contain significant 
extra information (we ignore them)

–

 

hence, dimension = 2 x D  x N, where D is the dimension of low level features (50) 
and N is the number of Gaussians (128)

–

 

very sparse, as only a few number of components i (typically < 5) have a non-

 
negligible “occurrence probability ”
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Patch and Pixel Scoring

•

 

Patch classifiers (PC) were:
–

 

trained on labeled Fisher Vectors (using masks and bounding boxes)
–

 

Linear Sparse Logistic Regression scores transformed in probabilities:

•

 

The class posterior at pixel level is the weighted average of the class posteriors of 
patches containing the pixel.

•

 

This leads to one class probability map (Pc

 

) per class.
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Examples of class probability maps

Tree Map Grass Map Dog Map
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Region labeling

•

 

Class probabilities are averaged over low level (Mean Shift) images segments 
and each segment R is labeled with:
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However

•

 

Using all probability masks might introduce many local False Positives !!
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Fast Rejection with Global Classification
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•

 

A visual categorizer is trained on weakly labeled data to detect

 

visual 
concepts/objects (any classifier can be used) and transform scores in 
probabilities (image level prior).

•

 

Then image level prior (ILP) is used to fast reject “non relevant”

 

probability 
maps :

•

 

 Reduce computational cost.
•

 

 Decrease false positive regions.
•

 

 Prevent the discovery of objects rejected by the global classifier.
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Global Image Classifier (used in the Classification Task)

•

 

MAP adaptation of the Universal GMM (Vocabulary) for each image.
•

 

Fast kernel computation between adapted GMMs

 

(approximate Probability 
Product Kernel), 

•

 

One-against-all Kernel

 

Sparse Logistic Regression (KSLR) to classify.

* A Similarity Measure between Unordered Vector Sets with Application to Image Categorization, Y. Liu and F. Perronnin, CVPR 
2008.

OBJ1
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Modified Patch Classifier (MPC)

•

 

Main idea:
–

 

Global image classifier rejects the improbable context/background.
–

 

Patch classifier separates the “object”

 

from its usual context.
•

 

How:
–

 

Train the patch classifier only with images containing the object:  
•

 

positive patches from object masks (segments and bounding boxes)
•

 

negative patches from the inversed masks 

Note:  In the challenge both type of patch classifiers (PC and MPC) were used and 
the four (2 color and 2 texture) corresponding probability maps averaged.
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Examples where it “rather”
 

succeeded
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Examples where it “had difficulties”

•

 

Confused classes

•

 

Under and over estimation (too low or too high probability value

 

in Pc

 

) 
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Examples where it failed (due to fast rejection ???)
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Discussion
• Its strengths: 

–

 

Simplicity
•

 

Simple patch classification with high level descriptors
•

 

Combined with Low level segmentation and ILP

–

 

Low computational cost:
•

 

The most costly bit (Mean Shift segmentation 30 s vs

 

1-2 s for the rest) can 
be avoided for many applications (where no need for accurate object 
boundaries).

–

 

Can be a good starting point for further processing or integration in 
more complex system (future research)

• Its limitations
–

 

The method is maybe too simple to give excellent results:
•

 

Still remains at the “bag-of-visual word”

 

level.
•

 

No geometry, no knowledge of shape, no global object model. 
•

 

Not suitable for object detection (see next slide).
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Object Detection Task

•

 

Indeed the approach is not well suited for detection (XRCE_det)
–

 

Not able to separate multiple instances or fuse separated object

 

parts, …

•

 

XRCE_Det

 

had low (7.1%) detection rate compared to the winner (22.6 %)
•

 

However, when segmentation from detection
–

 

we got 18.9%, and they got 3.7% segmentation accuracy
–

 

even with bounding boxes (both  input and output), it was the third best segmentation 
result (not counting UIUC_CMU which used their own training data).
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BACKUP SLIDES
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GMM estimation -
 

EM algorithm

•

 

Advantages of adapted GMMs:
–

 

MAP more robust than MLE when training data is scarce
–

 

MAP faster than MLE to train (smaller number of EM iterations required)

•

 

Universal model: MLE •

 

Adapted image model: MAP

relevance factor

•

 

Definition:
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Kernel computation: PPK

Formula:

Existing approximations [JK03]:

Our proposed MAP_OTO:

ρ=1, Expected Likelihood Kernel
ρ

 

=0.5, Bhattacharyya Kernel
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With and without  Fast Rejection –
 

Pascal VOC 2007

Method BOV FV

No global rejection 0.12 0.15

Using patches from all 
images to train (PC)

0.19 0.21

Using patches from 
images containing the 
object to train (MPC)

0.24 0.26
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