Discriminatively Trained Mixtures of Deformable Part Models

Pedro Felzenszwalb and Ross Girshick University of Chicago

David McAllester Toyota Technological Institute at Chicago

> Deva Ramanan UC Irvine

http://www.cs.uchicago.edu/~pff/latent

Model Overview

- Mixture of deformable part models (pictorial structures)
- Each component has global template + deformable parts
- Fully trained from bounding boxes alone

2 component bicycle model

root filters coarse resolution finer resolution

part filters

Object Hypothesis

Multiscale model captures features at two resolutions

Connection with linear classifier

score on detection window *x* can be written as

$$f_w(x) = \max_z w \cdot \Phi(x, z)$$

concatenation filters and deformation parameters

concatenation of HOG features and part displacements and 0's

w: model parameters *z*: latent variables:
component label and
filter placements

Latent SVM

$$f_w(x) = \max_z w \cdot \Phi(x,z)$$

/ Linear in w if z is fixed

Training data: $(x_1, y_1), ..., (x_n, y_n)$ with $y_i \in \{-1, 1\}$

Learning: find w such that $y_i f_w(x_i) > 0$

$$w^* = \underset{w}{\operatorname{argmin}} \lambda ||w||^2 + \sum_{i=1}^n \max(0, 1 - y_i f_w(x_i))$$

$$\bigwedge$$
Regularization
Hinge loss

Latent SVM training

$$w^* = \operatorname*{argmin}_w \lambda ||w||^2 + \sum_{i=1}^n \max(0, 1 - y_i f_w(x_i))$$

- Non-convex optimization
- Huge number of negative examples
- Convex if we fix *z* for positive examples
- Optimization:
 - Initialize *w* and iterate:
 - Pick best *z* for each positive example
 - Optimize w via gradient descent with data mining

Initializing w

- For *k* component mixture model:
- Split examples into k sets based on bounding box aspect ratio
- Learn k root filters using standard SVM
 - Training data: warped positive examples and random windows from negative images (Dalal & Triggs)
- Initialize parts by selecting patches from root filters
 - Subwindows with strong coefficients
 - Interpolate to get higher resolution filters
 - Initialize spatial model using fixed spring constants

Car model

root filters coarse resolution finer resolution

part filters

Person model

root filters coarse resolution finer resolution

part filters

Bottle model

root filters coarse resolution finer resolution

part filters

Histogram of Gradient (HOG) features

- Dalal & Triggs:
 - Histogram gradient orientations in 8x8 pixel blocks (9 bins)
 - Normalize with respect to 4 different neighborhoods and truncate
 - 9 orientations * 4 normalizations = 36 features per block
- PCA gives ~10 features that capture all information
 - Fewer parameters, speeds up convolution, but costly projection at runtime
- Analytic projection: spans PCA subspace and easy to compute
 - 9 orientations + 4 normalizations = 13 features
- We also use 2*9 contrast sensitive features for 31 features total

Bounding box prediction

- predict (x_1, y_1) and (x_2, y_2) from part locations
- linear function trained using least-squares regression

Context rescoring

- Rescore a detection using "context" defined by all detections
- Let v_i be the max score of detector for class i in the image
- Let s be the score of a particular detection
- Let (x_1, y_1) , (x_2, y_2) be normalized bounding box coordinates
- $f = (s, x_1, y_1, x_2, y_2, v_1, v_2..., v_{20})$
- Train class specific classifier
 - f is positive example if true positive detection
 - f is negative example if false positive detection

Bicycle detection

More bicycles

False positives

Car

Bottle

Horse

Code

Source code for the system and models trained on PASCAL 2006, 2007 and 2008 data are available here:

http://www.cs.uchicago.edu/~pff/latent