

Classification aided two stage localization

Hedi Harzallah, Cordelia Schmid, Frederic Jurie, Adrien Gaidon

INRIA, LEAR project team

PASCAL VOC2008 challenge workshop

Introduction

- Detection task on PASCAL VOC2008 challenge
- Method with sliding windows (Each window is classified as containing or not the targeted object)

Learn a classifier by providing positive and negative examples

Training outline

Training outline

Generating training windows

Generating training windows

• Adding positive training examples by shifting and scaling the original annotations [Laptev06]

- Negative examples randomly extracted from background
- Training an initial classifier
- Retraining 4 times by adding false positives

Examples of false positives

Image representation

Image representation: Histogram-ofgradients (HOG)

• Tiling optimized per class (around 100 overlapping tiles)

• Computed with integral histograms

• With 16 orientations

Image representation : Dense SIFT

- Computed over dense patches (shift step 6 pixels, scale step 1.2)
- Discretized into 100 visual words using k-means
- Used as BOW with a spatial pyramid [Lazebnik06]

Learning procedure

Learning procedure

- Training one classifier per view (Side, Front/Rear, Unspecified)
- Linear SVM classifier
 - HOG only (combining with SIFT gives minor gain at high cost)
- Non Linear SVM classifier
 - We use non linear X² kernel SVM [Zhang et al 2007]
 - Training with:
 - Examples used in the linear case (positives + shifted positives + hard false positives)
 - Additional random 70K negative examples

Testing outline

Evaluation of linear/non linear SVM

- Using HOG only to learn the non linear classifier
- Linear classifier used not only for filtering but also for scoring

	Linear	Linear + X ²
All classes	0.139	0.220
aeroplane	0.039	0.184
horse	0.249	0.435
diningtable	0.096	0.108
pottedplant	0.100	0.118

Evaluation of linear/non linear SVM

Precision recall curve for the class horse using HOG features

Precision

Evaluation of descriptors

- Scoring classifiers learned with different features
- Applied on the same hypotheses

	HOG	SIFT	HOG+SIFT
All classes	0.220	0.231	0.264
aeroplane	0.184	0.298	0.338
car	0.475	0.425	0.511
train	0.318	0.344	0.291
bus	0.432	0.397	0.423

Evaluation of descriptors

Precision recall curve for the class car

Precision

Combining localization and image classification

- Provides contextual information
- Results are more reliable in image classification
- Transform scores into probabilities
- New score = P(det) * P(cls)

Influence of the use of image classification score

• We use the Lear_flat submission [Gaidon and Marszalek]

	HOG+SIFT	HOG+SIFT plusclass
All classes	0.264	0.290
cow	0.240	0.309
sheep	0.212	0.273
car	0.511	0.518
motorbike	0.417	0.427

Example of results: cars

Top true positives

First false positives

Missed

Example of results: cow

Top true positives

First false positives

Missed

Example of results: chair

First false positives

Missed

Summary

- Two stage classification (hypotheses prediction, hypotheses verification)
- Image representation combination
- Reweighting with classification score
- Worse performance on some articulated classes (part models more suited)
- Outperform other competitors on most of the rigid classes

Thank you

