VOC 2008: A Unified Approach for Detection, Classification and Segmentation

Derek Hoiem¹ Santosh Divvala² James Hays²

¹University of Illinois at Urbana-Champaign, Beckman Institute ²Carnegie Mellon University, Robotics Institute

Take a Good Detector and Make It Better

- UofCTTI from VOC 2007 (CVPR 2008)
- Many thanks to Pedro Felzenszwalb, David McAllester, and Deva Ramanan!

Goal: Better Detection using Context and Segmentation

I. Need for Context

• Example: Top 5 Cat Detections

Global Context

Object presence: P(object_present | image)

Contains Cat

No Cat

Global Context

- Object presence: P(object_present | image)
- 2. Object position: P(object_xy | object_present, image)

Global Context

- Object presence: P(object_present | image)
- 2. Object position: P(object_xy | object_present, image)
- 3. Object size: P(object_size | object_xy, object_present, image)

Likelihood of Object Presence

Image Statistics

Image

Gist

Associated Data

gist: Torralba Oliva 2003

geom context: Hoiem et al. 2005 im2gps: Hays and Efros 2008

Classification by Association

Input Image

Sample of Nearest Neighbors

Associated Tags/Geo

Squirrel ... **Seattle**

Urban ... **High Pop**

Low Pop

Lion ... Zoo

Grassland ...

River ... Waterfall

Water ... Low Pop Associated Data for Decision

Keywords

Animals: 4

Food: 1

Aquarium: 2

Sky: 0 Boat: 0 Race: 0

Verdict: Likely

Geographic **Context**

Photo Density: 0.2

Pop Density: 0.6

CropsGrass: 0.2

Boat: 0 Race: 0

Verdict: Not Sure

Likelihood of Object Position

 Build classifier for each cell based on whole image gist and geometric context

Likelihood of Object Size

- Predict bounding box height at given location
 - y-position
 - depth estimate at position
 - global gist and geometric context

Depth: Hoiem et al. 2007

Size from Gist: Torralba Oliva 2003

Score Combination

Independently Trained Classifiers

Appearance Score

Window-Based Detector

Presence Scores

Gist + GC Associated Data

Position Scores

Score in cell
Max in neighboring cells

Size Scores

Box height
Diff from predicted height

Weights

L1-Regularized Logistic Regression

Bounding Box Score

Top-Ranked Candidates Are More Reliable with Context

Top 5: Before Context

Top 5: After Context

Quantitative Improvement with Context

II. Need for Better Localization

Multiple Detections

Poor Localization

Segmentation

PbGlobal: Maire et al. 2008 Occlusion: Hoiem et al. 2007 GraphCuts: Boykov et al. 2001

Segmentation Examples

Segmentation Examples

Segment Appearance

- Histogram (normalized bin count + entropy)
 - Quantized color
 - Textons
 - Quantized HOG

Final score = w_b bbox_score + w_s segment_score

Quantitative Improvement with Segmentation

Detection, Segmentation, Classification

Local Detector Scores

Felzenszwalb et al. 2008

Global Context

presence, position, size

Per-candidate Segmentation

localization, suppression, segment appearance

Detection Result

bounding boxes with scores

Detection Result

threshold scores

Multi-Candidate Segmentation

alpha expansion

Segmentation Result

pixel labels

Detection Result

max score for each object class

Global Context

presence

Bag of Words

HOG

Classification Result

image score

Overall VOC'08 Challenge Results

	UIUC_CMU	Тор	Second
Classification (comp2)	44.3	58.6 ¹	54.2 ²
Detection (comp4)	22.0	22.9 ³	22.6 ⁴
Segmentation (comp6)	19.5	25.4 ⁵	20.1 ⁶

- 1. UvA_0708Soft5ColorSift
- 2. UvA_AdapTagRelDom
- 3. LEAR_PlusClass (comp3)
- 4. UoCTTIUCI (comp3)
- 5. XRCE_Seg (comp5)
- 6. BrookesMSRC (comp5)

Detection Results

= First		= Second
---------	--	----------

	LEAR (Comp3)	UoCTTI (Comp3)	UIUC_CMU (Comp4)
AEROPLANE	36.5	32.6	34.5
BICYCLE	34.3	42.0	32.7
BIRD	10.7	11.3	12.3
BOAT	11.4	11.0	11.0
BOTTLE	22.1	28.2	22.4
BUS	23.8	23.2	18.5
CAR	36.6	32.0	27.8
CAT	16.6	17.9	21.6
CHAIR	11.1	14.6	8.8
COW	17.7	11.1	14.1
DINING TABLE	15.1	6.6	15.2
DOG	9.0	10.2	17.8
HORSE	36.1	32.7	27.4
MOTORBIKE	40.3	38.6	40.9
PERSON	19.7	42.0	37.4
POTTED PLANT	11.5	12.6	11.2
SHEEP	19.4	16.1	7.0
SOFA	17.3	13.6	13.5
TRAIN	29.6	24.4	28.2
TV MONITOR	34.0	37.1	38.5

Importance of Context & Segmentation for Detection

	Mean A.P.*	Classes most benefitted
Local Detector (UoCTTI'07)	18.1	
+ Context	20.5	Dining table, Motorbike, Cat, Dog, Person
+ Segmentation	21.3	Airplane
Final (UIUC_CMU'08)	22.6	TV monitor, Train

Relative Importance of Contextual Features

P(object_present | image) P(object_xy | object_present, image)

P(object_size | object_xy, object_present, image)

	Mean A.P.*
Local Detector (UoCTTI'07)	18.1
+ Scene, Location, Size	20.5
except Scene	19.1
except Location	19.9
except Size	18.9

Qualitative Observations

Classes helped: Airplane, bird, cat, cow, dog, dining table, person, sofa, tv monitor, train

Aeroplane

Two of the top 10 detections by only using UoCTTI'07

Segmentation: Improves Localization

Cat

Two of the top 10 detections by only using UoCTTI'07

Segmentation: Improves Localization

Qualitative Observations

Classes helped: Airplane, bird, cat, cow, dog, dining table, person, sofa, tv monitor, train

Classes not helped: Bottle, potted plant, horse, bus, car, bicycle, motorbike

What context should be used?

Potted Plant

Bottle

Qualitative Observations

Classes helped: Airplane, bird, cat, cow, dog, dining table, person, sofa, tv monitor, train

Classes not helped: Bottle, potted plant, bus, car, bicycle, motorbike

⊗ Classes hurt: Chair, sheep, boat

Poor Segmentation can misguide the detector

Before Segmentation

After Segmentation

Segmentation Results		= First = Secor	nd	
	UIUC_CMU (comp6)	XRCE_Seg (comp5)	Brookes_MSRC (comp5)	1
AEROPLANE	31.9	25.8	36.9	
BICYCLE	21.0	15.7	4.8	ļ
BIRD	8.3	19.2	22.2	
BOAT	6.5	21.6	11.2	
BOTTLE	34.3	17.2	13.7	
BUS	15.8	27.3	13.8	
CAR	22.7	25.5	20.4	
CAT	10.4	24.2	10.0	
CHAIR	1.2	7.9	8.7	
COW	6.8	25.4	3.6	
DINING TABLE	8.0	9.9	28.3	
DOG	10.2	17.8	6.6	
HORSE	22.7	23.3	17.1	
MOTORBIKE	24.9	34.0	22.6	
PERSON	27.7	28.8	30.6	
POTTED PLANT	15.9	23.2	13.5	
SHEEP	4.3	32.1	26.8	
SOFA	5.5	14.9	12.1	
TRAIN	19.0	25.9	20.1	
TV MONITOR	32.1	37.3	24.8	

Segmentation Results

Conclusions

 Common framework for classification, detection and segmentation

Use of context and segmentation to improve object detection

Thank You

