Object-class Segmentation using Higher order CRF

Ľubor Ladický¹, Pushmeet Kohli² Philip Torr¹

¹Oxford Brookes University ²Microsoft Research Cambridge

ECCV 2008

Object Segmentation using CRFs

CRF Energy

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \psi_i(x_i) + \sum_{i \in \mathcal{V}, j \in \mathcal{N}_i} \psi_{ij}(x_i, x_j) + \sum_{c \in \mathcal{S}} \psi_c(\mathbf{x}_c)$$

Labels - set of object classes { background, bird, car, ..}

 x_i - label of pixel i

Object Segmentation using CRFs

CRF Energy

Multifeature unary potential

• Inspired by [Shotton et al. ECCV06]

Feature maps Colours ⇔ Cluster

Multifeature unary potential

 Unary likelihood based on spatial configuration of features

Shape filter

feature type f cluster t

rectangle r

models appearance context and shape

Multi-feature unary potential

Main differences [Shotton et al., ECCV06]

- Multiple features boosted together
- Gaussian distribution of rectangles
- Threshold set grows exponentially
- Memory compressions
- Weighted training samples

Models, appearance context, and shape

Object Segmentation using CRFs

CRF Energy

Contrast-sensitive pairwise potential

• Pairwise cost

$$\psi(x_i, x_j) = \begin{cases} 0 & \text{if } x_i = x_j, \\ g(i, j) & \text{otherwise,} \end{cases}$$

$$g(i,j) = \theta_p + \theta_v \exp(-\theta_\beta ||I_i - I_j||^2)$$

 Enforces label consistency in adjacent pixels

Higher Order CRF Model $E(\mathbf{x}) = \sum \psi_i(x_i) + \sum \psi_i(x_i, x_j) + \sum \psi_c(\mathbf{x}_c)$ $i \in \mathcal{V}$ $i \in \mathcal{V}, j \in \mathcal{N}_i$ $c \in S$ Encourages label consistency in regions

Multiple Segmentations

Comaniciu and Meer PAMI 2002 Shi and Malik PAMI 2000 Felzenszwalb and Huttenlocher IJCV 2004

- Encourages consistency within super-pixels
- Takes the form of a P^N Potts model [Kohli et al. CVPR 2007]

 $\psi_c^p(\mathbf{x}_c) = \begin{cases} 0 & \text{if } x_i = l_k, \forall i \in c \\ f(|c|) & \text{otherwise} \end{cases}$

- Encourages consistency within super-pixels
- Takes the form of a P^N Potts model [Kohli et al. CVPR 2007]

 $\psi_c^p(\mathbf{x}_c) = \begin{cases} 0 & \text{if } x_i = l_k, \forall i \in c \\ f(|c|) & \text{otherwise} \end{cases}$

- Encourages consistency within super-pixels
- Takes the form of a P^N Potts model [Kohli et al. CVPR 2007]

 $\psi_c^p(\mathbf{x}_c) = \begin{cases} 0 & \text{if } x_i = l_k, \forall i \in c \\ f(|c|) & \text{otherwise} \end{cases}$

- Encourages consistency within super-pixels
- Takes the form of a P^N Potts model [Kohli *et al*. CVPR 2007]

$\begin{array}{ccc} 0 & \text{if } x_i = l_1, \forall i \in c \\ \hline \text{Does not distinguish between} \\ \hline \text{Good/Bad Segments } \end{array}$

Cost: f(|c|)

Quality based Label Consistency

Label inconsistency cost depends on segment quality

$$\psi_c^v(\mathbf{x}_c) = \begin{cases} 0 & \text{if } x_i = l_k, \forall i \in c \\ \theta_p + \theta_v G(c) & \text{otherwise} \end{cases}$$

Quality based Label Consistency

Label inconsistency cost depends on segment quality

$$\psi_c^v(\mathbf{x}_c) = \begin{cases} 0 & \text{if } x_i = l_k, \forall i \in c \\ \theta_p + \theta_v G(c) & \text{otherwise} \end{cases}$$

How to measure quality G(c)? [Ren and Malik ICCV03, Rabinovich et al. ICCV07, many others]

- Colour and Texture Similarity
- Contour Energy

Measure quality from variance in feature responses

$$G(c) = \exp(-\theta_{\beta} f_{v}(c))$$

Higher order generalization of contrast-sensitive pairwise potential

Quality based Label Consistency

MSRC image

Mean shift segmentation

Segment Quality (darker is better)

Robust Consistency Potentials

Robust

Kohli, Kumar, Torr, CVPR

Kohli, Ladicky, Torr, CVPR 2008

Robust Consistency Potentials

Robust Consistency Potentials

- Some pixels are less important than others (for instance, Segment boundary pixels)
- Weighted version of the inconsistency count

Minimizing Higher order Energy Functions

- Message passing is computationally expensive
 - High runtime and space complexity $O(L^N)$
 - L = Number of Labels, N = Size of Clique

- Efficient BP for Higher Order MRFs [Lan et al. ECCV 06, Potetz CVPR 2007]
 - 2x2 clique potentials for Image Denoising
 - Take minutes per iteration (Hours to converge)

Graph Cuts for Minimizing Higher order Energy Functions (Our Approach)

- Binary label problems can be solved exactly
- Can handle very high order energy functions
- Extremely efficient: computation time in the order of seconds
- Graph Cut based move making algorithm for Multilabel Functions
 [Kohli, Ladický, Torr - CVPR08]

 Only applicable to some classes of functions (described earlier)

Overview of our Method

Results

Results

Conclusions

- Improvement of boosted unary potential
- Method to enforce label consistency in image regions
- Generalization of the commonly used pairwise contrast sensitive potential
- Allows integration of pixel and region level features for image labelling problems

Conclusions

- Bottom-Up approach showed its potential
- Performance can be boosted using state-of the art descriptors and more tunning
- Future work
 - More solvable energies
 - More features
 - More tunning
- We want background classes!

Thank you

Questions ?