VOC2009 RESULTS

Key to abbreviations

Classification Results: VOC2009 data

Competition "comp1" (train on VOC2009 data)

Average Precision (AP %)

  aero
plane
bicycle bird boat bottle bus car cat chair cow dining
table
dog horse motor
bike
person potted
plant
sheep sofa train tv/
monitor
ALCALA_AVW 70.939.043.153.014.756.338.247.740.228.229.234.539.139.768.518.533.734.765.244.4
ALCALA_LAVW 70.434.843.449.216.657.339.745.639.726.722.630.341.039.667.518.632.527.364.942.6
CASIA_SVM-MULTIFEAT 78.245.848.750.727.561.147.449.252.230.537.142.052.251.981.628.729.734.667.953.0
CNRS_FUSE-KNN-CTS 66.833.235.845.820.049.038.535.741.722.823.432.235.335.567.516.626.720.055.340.6
CNRS_KNN-CT 57.619.831.640.417.140.135.732.135.621.818.126.822.529.165.317.016.616.441.433.6
CNRS_KNN-GABOR 51.821.831.829.018.337.633.428.536.817.718.723.317.328.962.916.617.922.735.536.6
CNRS_KNN-HRGB 42.112.022.529.713.814.323.725.027.313.316.123.514.120.460.813.217.310.918.622.7
CNRS_KNN-OSHL 61.529.426.038.417.241.325.628.634.312.920.424.831.723.461.017.524.620.643.636.3
CVC_FLAT 85.357.866.066.136.270.660.663.555.144.653.449.164.466.884.837.444.147.981.967.5
CVC_FLAT-HOG-ESS 86.360.766.465.341.071.764.763.955.540.151.345.965.268.985.040.849.049.181.868.6
CVC_PLUS 86.658.466.767.334.870.460.064.252.543.050.846.564.166.884.437.545.145.482.167.0
FIRSTNIKON_AVGSRKDA 83.359.362.765.330.271.658.262.254.340.749.250.066.662.983.334.248.246.183.465.5
FIRSTNIKON_AVGSVM 83.858.262.665.232.069.857.761.154.544.050.349.664.661.783.233.446.548.081.665.3
FIRSTNIKON_BOOSTSRKDA 83.059.261.464.633.271.157.561.054.840.748.350.065.563.482.832.847.047.183.364.6
FIRSTNIKON_BOOSTSVMS 83.556.861.865.533.269.757.360.554.643.148.350.364.362.482.332.946.948.482.064.2
FIRST_L2MKL 6.86.916.86.78.94.112.49.013.75.84.718.55.95.449.56.13.48.013.85.6
HAS_FISHSIFT-FISHSEG 51.026.124.030.411.632.421.634.623.111.39.131.215.618.463.29.413.110.926.625.3
IIR_SVM-ROI-IC 74.649.945.148.619.659.646.247.847.333.836.036.851.950.073.415.737.236.569.954.0
KERLE_SVM-DENSESIFT 74.245.646.555.620.559.748.748.245.923.031.541.250.649.876.522.030.841.766.250.4
LEAR_CHI-SVM-MULT 79.751.854.361.330.866.752.055.752.638.742.045.058.061.281.027.636.341.573.858.9
LEAR_CHI-SVM-MULT-LOC 79.555.554.563.943.770.366.456.554.438.844.146.258.564.282.239.141.339.873.666.2
LEOBEN_DENSESIFT 77.048.553.357.028.963.951.952.148.530.831.143.654.755.577.219.836.046.371.754.9
LEOBEN_SCC-200 80.449.654.960.723.664.654.052.550.831.143.243.155.856.780.429.741.743.073.858.8
LEOBEN_SCC-CLS 79.552.157.259.929.363.555.153.951.131.342.944.154.858.481.130.040.244.274.958.2
LIG_MIRIM-VPH 62.029.126.929.612.226.023.533.635.714.810.622.220.518.564.610.116.911.320.736.0
LIG_MRIM-COLORSIFT 69.537.038.840.423.148.236.340.641.917.431.529.239.135.272.923.129.322.952.840.1
LIG_MRIM-FUSION 71.641.240.645.525.154.639.543.946.619.732.333.944.343.074.323.331.024.860.843.0
LIP6_HB-SPK-SVM 77.949.849.556.727.263.051.452.949.833.237.742.856.453.877.721.736.339.572.757.7
LIP6_SS-SPK-SVM 80.952.353.860.829.166.253.455.950.733.843.944.659.458.080.025.341.942.578.460.1
LIRIS_BASELINE 73.544.346.053.723.955.547.243.947.118.335.537.047.344.576.724.632.635.464.848.7
LIRIS_EER 74.144.045.454.923.556.846.943.747.118.335.437.446.944.576.724.630.835.763.648.8
LIRIS_SOFT-BASELINE 70.033.840.647.320.750.042.838.543.719.932.734.136.734.873.023.028.724.157.541.1
LIRIS_SOFT-EER 70.333.741.448.621.051.142.838.343.620.132.934.436.234.773.223.125.624.957.240.5
MPI_STRUCT 75.949.344.448.724.366.350.352.737.035.438.543.155.262.167.922.740.544.468.449.8
NECUIUC_CDCV 88.168.068.072.541.078.970.470.458.153.455.759.373.171.384.532.353.356.786.066.8
NECUIUC_CLS-DTCT 88.068.667.972.944.279.572.570.859.553.657.559.072.672.385.336.656.957.985.968.0
NECUIUC_LL-CDCV 87.167.465.872.340.978.369.769.758.550.155.156.371.870.884.131.451.555.184.765.2
NECUIUC_LN-CDCV 87.767.868.171.139.178.570.670.757.451.753.359.271.670.684.030.951.755.985.966.7
RITSU_AKF 75.952.350.655.925.465.448.950.448.636.244.441.954.752.976.817.138.439.372.554.3
RITSU_ASF 75.451.450.455.724.465.748.749.548.832.442.741.954.152.876.117.138.639.572.353.1
RITSU_WSF 76.951.750.755.328.465.447.450.148.536.343.341.054.854.276.716.938.838.872.553.9
TSINGHUA_ALL-SVM-BOOST 45.514.529.233.921.022.125.822.429.89.718.925.020.627.365.98.420.817.732.928.3
TSINGHUA_SVM-SEG-HOG 32.76.0-15.111.19.317.48.513.42.67.912.5--57.89.65.36.97.99.2
UC3M_GEN-DIS 69.943.833.536.127.651.649.141.144.424.329.836.438.851.172.519.921.322.951.441.2
UVASURREY_BASELINE 84.159.262.765.435.770.659.861.356.745.352.450.666.166.683.734.847.247.780.865.9
UVASURREY_MKFDA+BOW 84.763.966.167.337.974.163.264.057.146.254.753.568.170.685.238.547.249.383.268.1
UVASURREY_TUNECOLORKERNELSEL 85.062.865.166.537.673.562.162.057.445.154.552.567.769.884.839.146.849.982.968.1
UVASURREY_TUNECOLORSPECKDA 84.662.465.667.239.474.063.462.856.743.854.752.767.370.685.038.846.950.082.266.2

Precision/Recall Curves

Classification Results: VOC2009 data

Competition "comp2" (train on own data)

Average Precision (AP %)

  aero
plane
bicycle bird boat bottle bus car cat chair cow dining
table
dog horse motor
bike
person potted
plant
sheep sofa train tv/
monitor

Precision/Recall Curves

Detection Results: VOC2009 data

Competition "comp3" (train on VOC2009 data)

Average Precision (AP %)

  aero
plane
bicycle bird boat bottle bus car cat chair cow dining
table
dog horse motor
bike
person potted
plant
sheep sofa train tv/
monitor
CASIA_SVM-PHOG 19.0 15.4 9.7 9.5 - 21.0 - - 2.8 - 2.4 - - - - - - - 16.1 -
CASIA_SVM-PHOG+COLOR 26.7 20.5 10.2 10.2 9.5 26.6 13.3 12.7 9.5 7.6 10.2 11.1 16.6 22.1 15.8 9.4 4.2 10.1 25.3 16.1
CVC_HOG-BOW 35.8 27.6 10.2 10.1 17.2 32.1 21.0 18.9 13.0 10.9 17.1 14.2 24.5 28.8 18.0 10.3 16.0 13.1 25.9 27.3
CVC_HOG-BOW-ESS-FLAT 35.5 27.5 11.1 11.2 16.7 32.2 20.8 19.2 13.9 14.6 16.3 12.1 29.0 29.0 18.8 11.6 18.4 19.4 30.6 26.6
LEAR_CHI-SVM-SIFT-HOG 27.1 30.2 9.8 10.7 19.6 36.0 32.1 12.5 11.2 14.0 16.4 10.2 22.6 27.8 19.9 11.6 16.5 11.9 34.5 32.1
LEAR_CHI-SVM-SIFT-HOG-CLS 28.4 30.7 11.0 12.4 21.4 36.2 32.2 14.1 12.0 18.5 17.8 15.6 25.7 29.5 20.5 12.8 20.8 14.2 35.1 34.7
MIZZOU_DEF-HOG-LBP 11.4 27.5 6.0 11.1 27.0 38.8 33.7 25.2 15.0 14.4 16.9 15.1 36.3 40.9 37.0 13.2 22.8 9.6 3.5 32.1
MIZZOU_DEF-HOG-LBP-WOCONTEXT 25.0 27.9 6.1 10.2 26.6 38.0 33.9 21.9 14.5 17.5 16.8 17.0 35.3 40.0 36.6 11.7 22.3 15.6 33.6 32.7
MPI_STRUCT 41.0 22.4 10.6 12.0 9.1 30.2 12.9 31.1 4.5 13.7 15.0 21.2 21.3 29.9 11.6 9.1 10.5 22.4 30.3 11.3
NECUIUC_CLS-DTCT 44.9 33.1 12.3 10.5 11.0 43.4 28.4 30.9 11.1 20.1 22.9 25.1 33.7 38.2 22.5 11.0 22.9 23.4 32.1 24.8
OXFORD_MKL 47.8 39.8 17.4 15.8 21.9 42.9 27.7 30.5 14.6 20.6 22.3 17.0 34.6 43.7 21.6 10.2 25.1 16.6 46.3 37.6
TSINGHUA_SVM-SEG-HOG 9.1 - - 2.3 9.1 - 9.1 - - 0.0 - 0.4 - 9.1 1.2 0.0 0.0 - 1.1 0.0
TTIWEIZ_NNHOUGH 23.8 24.0 - - - 21.9 21.0 - - 14.3 - - 19.6 24.0 - - - - - 23.2
UC3M_GEN-DIS 22.4 17.1 10.4 9.5 9.1 18.6 11.0 22.0 9.2 10.0 10.5 16.5 15.1 21.8 11.5 9.2 9.9 11.4 17.1 2.6
UVA_BAGOFWINDOWS 32.5 23.7 10.6 8.4 3.2 28.2 14.4 33.7 1.2 13.2 16.3 23.2 24.6 30.7 13.1 4.5 9.3 28.0 29.0 9.5
UVA_BOWSEG 40.2 - 6.9 - - 26.4 - 34.0 - - 19.0 - - - - - - 21.2 27.2 -
UoCTTI_LSVM-MDPM 39.5 46.8 13.5 15.0 28.5 43.8 37.2 20.7 14.9 22.8 8.7 14.4 38.0 42.0 41.5 12.6 24.2 15.8 43.9 33.5

Precision/Recall Curves

Detection Results: VOC2009 data

Competition "comp4" (train on own data)

Average Precision (AP %)

  aero
plane
bicycle bird boat bottle bus car cat chair cow dining
table
dog horse motor
bike
person potted
plant
sheep sofa train tv/
monitor
BERKELEY_POSELETS - - - - - - - - - - - - - - 43.2 - - - - -

Precision/Recall Curves

Segmentation Results (VOC2009 data)

Competition "comp5" (train on VOC2009 data)

Accuracy (%)

- Entries in parentheses are synthesized from detection results.

  [mean] back
ground
aero
plane
bicycle bird boat bottle bus car cat chair cow dining
table
dog horse motor
bike
person potted
plant
sheep sofa train tv/
monitor
BONN_SVM-SEGM 36.3 83.9 64.3 21.8 21.7 32.0 40.2 57.3 49.4 38.8 5.2 28.5 22.0 19.6 33.6 45.5 33.6 27.3 40.4 18.1 33.6 46.1
BROOKESMSRC_AHCRF 24.8 79.6 48.3 6.7 19.1 10.0 16.6 32.7 38.1 25.3 5.5 9.4 25.1 13.3 12.3 35.5 20.7 13.4 17.1 18.4 37.5 36.4
(CASIA_SVM-PHOG+COLOR) 10.3 24.5 8.2 4.3 6.5 4.8 14.7 27.2 10.0 7.0 4.2 6.5 4.9 3.6 10.3 14.5 11.2 8.1 10.6 4.9 13.3 17.6
CVC_HOCRF 34.5 80.2 67.1 26.6 30.3 31.6 30.0 44.5 41.6 25.2 5.9 27.8 11.0 23.1 40.5 53.2 32.0 22.2 37.4 23.6 40.3 30.2
(CVC_HOG-BOW) 9.4 2.3 9.4 6.1 3.4 5.2 13.5 21.8 15.2 6.6 2.2 7.0 1.6 5.6 11.1 11.7 16.8 3.2 13.8 7.3 17.3 16.5
(CVC_HOG-BOW-ESS-FLAT) 0.9 2.0 1.7 0.2 0.1 0.3 0.6 0.1 0.2 1.2 0.3 0.8 0.4 0.1 0.2 0.1 1.7 1.1 1.1 2.0 0.2 4.6
(LEAR_CHI-SVM-SIFT-HOG) 8.4 7.1 7.4 4.2 2.9 5.2 15.1 19.7 17.7 5.8 2.3 6.3 2.6 3.7 7.0 6.3 9.7 7.6 9.2 7.5 12.8 16.8
(LEAR_CHI-SVM-SIFT-HOG-CLS) 5.9 6.8 4.0 2.1 1.4 1.8 3.7 19.5 11.8 5.3 3.8 0.1 3.6 3.0 2.1 2.8 8.0 0.9 4.4 8.3 6.9 22.8
LEAR_SEGDET 25.7 79.1 44.6 15.5 20.5 13.3 28.8 29.3 35.8 25.4 4.4 20.3 1.3 16.4 28.2 30.0 24.5 12.2 31.5 18.3 28.8 31.9
(MIZZOU_DEF-HOG-LBP) 7.5 0.6 1.2 2.5 0.0 0.0 18.4 33.7 13.3 7.6 0.7 2.2 1.1 2.8 13.8 22.7 14.9 0.6 15.5 0.0 0.0 5.5
(MIZZOU_DEF-HOG-LBP-WOCONTEXT) 5.4 0.6 1.3 2.9 0.0 0.0 22.7 5.0 9.5 3.2 1.3 2.8 0.3 1.4 8.9 7.9 11.9 0.9 10.9 2.8 3.5 14.9
MPI_A2 15.0 70.9 16.4 8.7 8.6 8.3 20.8 21.6 14.4 10.5 0.0 14.2 17.2 7.3 9.3 20.3 18.2 6.9 14.1 0.0 13.2 13.2
(MPI_STRUCT) 11.0 10.6 9.8 5.1 6.1 7.2 12.0 29.1 17.2 9.6 2.7 12.8 7.7 9.5 11.5 13.4 13.5 5.0 10.2 7.9 15.6 14.3
NECUIUC_CLS-DTCT 29.7 81.8 41.9 23.1 22.4 22.0 27.8 43.2 51.8 25.9 4.5 18.5 18.0 23.5 26.9 36.6 34.8 8.8 28.3 14.0 35.5 34.7
NECUIUC_SEG 28.3 81.5 39.3 20.9 22.6 21.7 26.1 37.1 51.5 25.2 5.7 17.5 15.7 24.2 27.4 35.3 33.0 7.9 23.4 12.5 32.1 33.3
(OXFORD_MKL) 10.9 2.0 9.2 7.7 5.3 6.1 20.1 36.7 18.2 8.5 2.9 6.5 1.4 6.2 10.9 12.2 15.5 4.2 8.9 5.1 20.8 19.7
UC3M_GEN-DIS 14.5 69.8 20.8 9.7 6.3 4.3 7.9 19.7 21.8 7.7 3.8 7.5 9.6 9.5 12.3 16.5 16.4 1.5 14.2 11.0 14.1 20.3
UCI_LAYEREDSHAPE 24.7 80.7 38.3 30.9 3.4 4.4 31.7 45.5 47.3 10.4 4.8 14.3 8.8 6.1 21.5 25.0 38.9 14.8 14.4 3.0 29.1 45.5
UCLA_SUPERPIXELCRF 13.8 51.2 13.9 7.0 3.9 6.4 8.1 14.4 24.3 12.1 6.4 10.3 14.5 6.7 9.7 23.6 20.0 2.3 12.6 12.3 17.0 13.2
(UVA_BAGOFWINDOWS) 12.6 12.3 10.9 5.9 5.4 10.7 7.8 36.4 17.6 9.9 4.6 11.7 12.9 7.2 17.8 19.1 16.3 2.0 15.5 6.7 22.2 11.0
UoCTTI_LSVM-MDPM 29.0 78.9 35.3 22.5 19.1 23.5 36.2 41.2 50.1 11.7 8.9 28.5 1.4 5.9 24.0 35.3 33.4 35.1 27.7 14.2 34.1 41.8

Segmentation Results (VOC2009 data)

Competition "comp6" (train on own data)

Accuracy (%)

- Entries in parentheses are synthesized from detection results.

  [mean] back
ground
aero
plane
bicycle bird boat bottle bus car cat chair cow dining
table
dog horse motor
bike
person potted
plant
sheep sofa train tv/
monitor
BERKELEY_POSELETS 5.5 78.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.3 0.0 0.0 0.0 0.0 0.0
BROOKESMSRC_AHCRF 24.5 79.6 40.1 9.0 17.6 1.5 20.6 34.9 29.4 24.1 6.1 13.8 28.3 13.3 9.3 31.1 23.0 17.1 18.0 24.7 36.1 37.5

Classification Results: VOC2008 data

Competition "comp1" (train on VOC2009 data)

Average Precision (AP %)

  aero
plane
bicycle bird boat bottle bus car cat chair cow dining
table
dog horse motor
bike
person potted
plant
sheep sofa train tv/
monitor
ALCALA_AVW 66.134.643.057.020.035.340.547.337.826.617.836.338.536.274.710.926.130.758.043.8
ALCALA_LAVW 65.731.344.053.816.739.341.743.735.020.019.031.940.937.173.619.023.422.056.945.6
CASIA_SVM-MULTIFEAT 75.440.950.955.226.540.452.048.048.625.427.342.256.050.885.826.331.830.664.252.6
CNRS_FUSE-KNN-CTS 63.628.336.951.720.235.841.233.835.819.818.631.438.333.673.613.525.517.549.440.3
CNRS_KNN-CT 54.118.431.645.016.523.338.531.126.618.714.426.423.828.571.814.010.215.136.434.8
CNRS_KNN-GABOR 50.420.333.329.817.923.935.927.333.710.613.120.816.327.969.88.28.720.227.132.8
CNRS_KNN-HRGB 37.512.226.736.114.46.426.024.921.59.112.023.115.020.067.711.68.67.613.323.2
CNRS_KNN-OSHL 60.723.426.944.116.835.331.627.731.614.515.522.533.122.967.116.023.619.338.335.6
CVC_FLAT 82.353.666.470.036.954.562.463.250.340.549.250.366.764.288.637.246.348.079.269.6
CVC_FLAT-HOG-ESS 83.357.467.268.839.955.666.963.750.834.947.247.367.766.888.840.246.649.479.471.5
CVC_PLUS 83.553.167.071.235.053.861.163.447.339.746.745.666.766.488.336.645.844.679.569.5
FIRSTNIKON_AVGSRKDA 81.154.464.469.131.654.660.461.749.730.745.850.969.460.287.133.747.044.380.865.6
FIRSTNIKON_AVGSVM 81.353.663.968.932.751.259.361.050.334.647.650.567.760.686.932.146.144.478.266.3
FIRSTNIKON_BOOSTSRKDA 80.854.763.668.733.054.660.960.150.834.844.950.268.962.886.930.744.846.079.964.6
FIRSTNIKON_BOOSTSVMS 81.053.263.268.932.851.360.460.251.436.547.650.467.161.486.531.642.446.177.564.5
FIRST_L2MKL 8.09.112.88.010.33.316.39.612.93.43.418.76.05.755.48.63.04.74.65.9
HAS_FISHSIFT-FISHSEG 48.017.925.733.411.925.021.734.922.09.38.230.016.319.169.110.58.910.721.225.5
IIR_SVM-ROI-IC 70.441.545.051.122.636.148.246.941.523.829.535.254.646.378.118.834.237.063.754.3
KERLE_SVM-DENSESIFT 70.840.348.459.319.840.353.148.143.519.824.241.852.346.381.815.930.538.258.050.3
LEAR_CHI-SVM-MULT 75.345.257.263.930.147.355.354.549.131.439.145.361.661.085.323.735.239.069.557.9
LEAR_CHI-SVM-MULT-LOC 75.652.257.466.043.251.969.255.849.831.842.246.760.662.886.438.040.441.070.165.4
LEOBEN_DENSESIFT 72.441.757.161.628.748.054.552.045.728.524.044.055.853.082.119.129.443.864.755.4
LEOBEN_SCC-200 78.244.255.963.122.645.754.953.246.626.736.543.557.352.884.827.640.940.368.659.9
LEOBEN_SCC-CLS 77.544.557.563.130.542.957.254.346.830.836.044.456.356.185.329.544.040.967.459.9
LIG_MIRIM-VPH 59.820.130.437.113.722.327.731.333.110.67.019.320.522.571.28.818.68.219.336.5
LIG_MRIM-COLORSIFT 66.730.339.446.321.928.838.438.537.113.728.228.640.432.878.319.932.415.945.741.5
LIG_MRIM-FUSION 68.532.442.151.424.835.642.941.242.618.628.832.648.040.579.719.234.118.956.344.4
LIP6_HB-SPK-SVM 74.642.849.359.527.043.053.750.745.124.933.343.561.450.282.514.934.634.266.758.7
LIP6_SS-SPK-SVM 77.346.154.563.027.948.555.256.146.926.941.545.363.954.484.619.338.537.974.560.6
LIRIS_BASELINE 69.637.547.557.124.134.549.942.543.516.127.537.649.044.081.822.826.532.056.249.0
LIRIS_EER 69.837.647.058.823.635.349.342.843.816.127.637.848.344.081.722.526.131.955.648.3
LIRIS_SOFT-BASELINE 65.830.541.051.821.530.544.736.440.720.023.433.437.733.778.820.822.716.747.840.9
LIRIS_SOFT-EER 66.730.541.652.321.931.844.436.540.320.223.733.337.233.179.220.722.216.546.940.8
MPI_STRUCT 73.342.246.452.521.549.152.150.932.629.740.942.160.560.474.322.634.544.564.950.6
NECUIUC_CDCV 86.765.069.674.040.164.472.269.954.348.950.458.074.869.888.631.448.455.482.967.3
NECUIUC_CLS-DTCT 86.365.369.574.042.464.874.169.755.250.053.358.774.771.389.137.254.159.484.267.3
NECUIUC_LL-CDCV 85.462.866.574.039.763.471.068.354.844.752.055.674.069.787.929.747.053.282.965.9
NECUIUC_LN-CDCV 86.464.669.673.538.563.971.869.253.347.750.758.473.868.788.130.347.456.483.167.1
RITSU_AKF 73.345.152.860.324.247.452.950.045.329.142.641.556.852.582.014.236.538.368.354.5
RITSU_ASF 73.346.352.260.224.046.151.648.644.930.142.041.856.852.081.413.536.538.667.252.6
RITSU_WSF 74.746.151.760.827.948.151.549.644.830.843.943.058.152.982.014.135.938.167.754.3
TSINGHUA_ALL-SVM-BOOST 45.415.629.037.422.111.032.821.623.47.47.922.720.927.670.37.117.217.621.631.1
TSINGHUA_SVM-SEG-HOG 30.25.4-21.39.53.818.78.411.72.26.012.0--64.111.92.15.16.48.7
UC3M_GEN-DIS 67.139.334.239.324.137.749.038.341.122.225.733.139.446.778.418.613.319.945.341.2
UVASURREY_BASELINE 81.953.064.067.933.353.461.760.953.240.351.051.068.764.387.833.745.445.477.566.7
UVASURREY_MKFDA+BOW 83.458.967.469.436.857.965.963.252.936.054.054.170.569.388.936.346.551.280.568.7
UVASURREY_TUNECOLORKERNELSEL 82.657.766.869.236.358.464.862.152.738.053.352.969.968.788.536.345.451.580.468.6
UVASURREY_TUNECOLORSPECKDA 83.058.667.069.737.457.965.961.852.537.354.853.369.069.888.736.346.150.680.266.9

Precision/Recall Curves

Classification Results: VOC2008 data

Competition "comp2" (train on own data)

Average Precision (AP %)

  aero
plane
bicycle bird boat bottle bus car cat chair cow dining
table
dog horse motor
bike
person potted
plant
sheep sofa train tv/
monitor

Precision/Recall Curves

Detection Results: VOC2008 data

Competition "comp3" (train on VOC2009 data)

Average Precision (AP %)

  aero
plane
bicycle bird boat bottle bus car cat chair cow dining
table
dog horse motor
bike
person potted
plant
sheep sofa train tv/
monitor
CASIA_SVM-PHOG 17.8 12.6 9.8 9.9 - 18.0 - - 2.5 - 3.0 - - - - - - - 14.5 -
CASIA_SVM-PHOG+COLOR 25.3 18.0 10.4 10.8 9.5 21.6 14.1 12.4 9.8 6.9 14.0 11.0 19.1 22.9 17.1 9.3 4.1 10.1 23.2 18.6
CVC_HOG-BOW 31.7 28.3 10.4 10.7 17.1 21.5 22.6 15.6 14.0 13.7 19.7 13.5 26.5 30.6 20.3 10.2 18.7 15.3 25.4 31.4
CVC_HOG-BOW-ESS-FLAT 32.2 27.9 11.2 12.2 16.7 19.5 22.0 18.7 15.7 18.7 18.0 12.8 30.8 31.9 21.9 11.4 19.5 23.1 30.0 30.7
LEAR_CHI-SVM-SIFT-HOG 25.6 29.5 5.1 11.0 21.6 22.9 33.9 14.5 12.3 12.7 19.8 12.6 23.0 27.0 22.2 11.0 18.7 14.2 31.4 35.1
LEAR_CHI-SVM-SIFT-HOG-CLS 26.7 30.7 11.2 12.7 22.2 24.0 34.5 15.5 13.6 15.0 20.9 11.9 27.3 27.8 22.3 12.0 24.3 16.5 31.9 37.2
MIZZOU_DEF-HOG-LBP 8.2 20.0 10.7 13.0 28.1 26.8 36.4 25.0 18.2 11.5 12.7 13.4 39.8 42.7 42.5 12.0 24.1 9.5 1.1 34.6
MIZZOU_DEF-HOG-LBP-WOCONTEXT 19.5 20.5 7.5 11.7 27.8 25.7 36.8 21.5 17.5 16.1 18.0 16.4 39.1 41.6 42.2 11.1 23.2 14.2 32.6 35.6
MPI_STRUCT 34.3 14.8 10.6 14.1 5.5 23.1 13.2 28.9 9.1 13.4 20.1 20.2 25.6 31.6 12.1 9.1 10.5 24.5 38.5 10.8
NECUIUC_CLS-DTCT 42.8 27.7 12.4 11.7 10.7 36.6 31.1 30.7 8.1 19.9 29.1 23.6 39.0 39.6 24.6 7.3 25.4 24.6 30.1 29.4
OXFORD_MKL 41.1 38.7 17.2 18.5 23.4 31.0 35.1 29.4 17.0 21.9 27.2 16.3 37.8 44.9 24.4 11.4 23.4 24.2 43.4 41.8
TSINGHUA_SVM-SEG-HOG 9.1 - - 2.3 0.0 - 9.1 - - 0.0 - 0.4 - 9.1 1.7 0.0 0.0 - 0.5 0.1
TTIWEIZ_NNHOUGH 21.4 20.5 - - - 8.5 23.7 - - 13.8 - - 19.4 24.9 - - - - - 26.5
UC3M_GEN-DIS 21.0 11.5 10.1 9.5 0.3 15.7 11.2 20.0 1.2 9.6 12.0 15.7 16.3 20.0 12.1 9.2 9.5 11.2 12.6 5.2
UVA_BAGOFWINDOWS 25.7 16.6 10.5 9.2 3.0 20.7 14.5 32.4 1.6 11.7 17.1 23.0 28.4 29.3 13.4 4.5 9.9 25.8 29.4 9.4
UVA_BOWSEG 35.1 - 6.9 - - 16.0 - 32.7 - - 20.3 - - - - - - 23.7 27.9 -
UoCTTI_LSVM-MDPM 34.9 47.1 15.4 14.4 30.1 31.8 40.9 21.0 17.9 24.7 6.7 14.1 43.1 44.3 47.6 12.8 25.0 18.0 37.5 36.7

Precision/Recall Curves

Competition "comp4" (train on own data)

Average Precision (AP %)

  aero
plane
bicycle bird boat bottle bus car cat chair cow dining
table
dog horse motor
bike
person potted
plant
sheep sofa train tv/
monitor
BERKELEY_POSELETS - - - - - - - - - - - - - - 48.7 - - - - -

Precision/Recall Curves

Segmentation Results (VOC2008 data)

Competition "comp5" (train on VOC2009 data)

Accuracy (%)

- Entries in parentheses are synthesized from detection results.

  [mean] back
ground
aero
plane
bicycle bird boat bottle bus car cat chair cow dining
table
dog horse motor
bike
person potted
plant
sheep sofa train tv/
monitor
BONN_SVM-SEGM 36.2 83.5 52.8 22.4 20.7 35.8 46.1 50.5 39.9 35.3 6.1 33.1 25.2 19.7 42.7 50.6 36.8 23.5 43.6 16.7 26.8 47.8
BROOKESMSRC_AHCRF 23.2 79.2 35.7 4.3 20.6 6.3 14.2 30.6 28.8 24.1 5.6 6.6 27.0 8.7 12.9 39.6 22.1 18.3 16.9 17.3 33.9 35.3
(CASIA_SVM-PHOG+COLOR) 10.5 24.8 6.8 4.7 6.1 6.0 16.3 20.7 7.1 7.3 3.7 5.0 5.2 4.2 11.2 18.3 12.5 8.2 14.5 5.6 14.6 18.2
CVC_HOCRF 34.8 79.4 56.3 26.6 40.6 36.1 27.3 48.4 37.9 23.4 9.1 21.4 10.1 24.5 41.2 56.4 32.8 26.8 39.2 21.9 41.0 31.1
(CVC_HOG-BOW) 9.3 2.5 8.0 6.4 3.5 6.0 12.1 17.5 12.5 6.5 2.1 7.3 1.4 4.3 12.4 13.6 18.4 2.7 15.4 8.0 16.7 17.3
(CVC_HOG-BOW-ESS-FLAT) 0.9 2.2 1.4 0.3 0.1 0.4 0.8 0.1 0.3 0.5 0.3 0.1 0.4 0.1 0.2 0.1 1.7 1.5 1.6 1.5 0.2 5.1
(LEAR_CHI-SVM-SIFT-HOG) 8.2 7.2 6.6 4.4 3.8 4.8 15.1 17.2 14.6 5.3 2.4 6.5 2.7 2.8 8.1 6.1 10.2 8.3 9.8 6.9 12.6 16.8
(LEAR_CHI-SVM-SIFT-HOG-CLS) 5.4 7.0 3.1 1.9 1.1 1.1 3.5 15.1 8.7 5.2 4.3 0.0 2.8 2.3 1.7 2.9 8.8 1.1 6.3 8.1 6.6 23.1
LEAR_SEGDET 24.1 78.4 36.8 15.1 20.5 11.8 27.8 24.5 28.7 18.4 4.7 16.4 0.8 16.1 28.2 31.4 24.5 14.9 31.4 15.7 28.8 30.8
(MIZZOU_DEF-HOG-LBP) 7.8 0.9 1.0 2.7 0.0 0.0 15.7 33.7 14.3 6.5 1.1 2.0 0.1 3.8 15.7 23.2 16.6 0.8 20.8 0.0 0.0 4.9
(MIZZOU_DEF-HOG-LBP-WOCONTEXT) 5.3 0.9 1.0 3.2 0.0 0.0 21.1 6.1 11.5 2.2 1.2 4.3 0.1 2.0 10.7 0.5 13.2 1.2 15.0 2.0 3.8 12.2
MPI_A2 15.0 71.8 16.1 8.7 10.5 7.6 14.6 20.8 9.3 6.0 0.0 15.4 21.1 5.6 13.2 27.7 20.4 9.6 14.3 0.0 11.0 12.5
(MPI_STRUCT) 11.1 10.7 7.4 5.6 5.8 9.7 9.7 27.5 11.6 9.2 2.3 13.7 9.8 9.0 12.4 15.4 15.7 6.2 13.1 6.1 16.6 14.7
NECUIUC_CLS-DTCT 28.9 81.2 34.9 25.2 22.6 22.8 29.6 37.3 40.5 26.6 5.7 18.9 17.6 22.5 28.6 36.1 37.5 11.6 31.3 8.7 32.8 35.0
NECUIUC_SEG 27.5 80.9 32.4 22.6 22.8 22.5 27.4 30.7 39.5 25.5 7.1 18.7 15.6 23.1 30.2 34.8 35.2 10.2 27.7 7.3 29.9 33.2
(OXFORD_MKL) 11.2 2.2 8.0 8.9 4.8 6.7 22.4 35.5 17.2 9.5 2.6 6.2 1.9 5.6 12.5 13.1 15.9 4.6 9.7 4.7 21.7 21.5
UC3M_GEN-DIS 13.8 69.0 13.3 9.3 6.1 5.1 6.3 15.2 18.6 8.0 6.3 6.9 8.8 7.9 10.8 17.6 18.9 2.0 17.7 9.0 12.9 21.0
UCI_LAYEREDSHAPE 23.6 80.5 36.8 29.4 4.6 3.4 33.0 33.9 41.4 8.5 6.1 16.7 7.6 4.4 19.0 26.4 41.3 8.9 18.3 4.3 27.5 44.0
UCLA_SUPERPIXELCRF 13.1 50.8 10.6 7.0 3.7 5.6 8.9 11.3 16.4 10.7 6.0 8.1 15.7 6.3 12.2 23.7 21.8 2.4 13.5 7.8 18.8 13.8
(UVA_BAGOFWINDOWS) 12.9 12.4 8.7 6.1 6.0 12.3 7.6 39.8 12.8 10.7 4.8 10.9 15.0 8.3 17.1 18.4 18.0 2.2 19.5 6.3 23.1 11.2
UoCTTI_LSVM-MDPM 29.2 78.7 34.8 23.4 20.0 29.0 37.3 27.8 42.3 11.4 9.0 31.9 0.5 5.9 27.2 38.1 36.7 37.1 33.6 16.5 32.1 40.5

Segmentation Results (VOC2008 data)

Competition "comp6" (train on own data)

Accuracy (%)

- Entries in parentheses are synthesized from detection results.

  [mean] back
ground
aero
plane
bicycle bird boat bottle bus car cat chair cow dining
table
dog horse motor
bike
person potted
plant
sheep sofa train tv/
monitor
BERKELEY_POSELETS 5.5 78.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.8 0.0 0.0 0.0 0.0 0.0
BROOKESMSRC_AHCRF 23.3 79.2 32.4 8.2 19.9 1.2 18.5 32.9 23.0 24.4 7.8 4.0 31.8 10.0 9.7 33.6 24.4 21.7 17.8 19.0 34.2 36.5

Key to Abbreviations

AbbreviationMethodAffiliationContributorsDescriptiorn
ALCALA_AVW AVWUniversity of Alcalá - GRAMRoberto J. López Sastre, Saturnino Maldonado BascónAggregating Visual Words (AVW) obtained from different runs of the K-means algorithm over SIFT descriptors. We use a clustering aggregation approach to build more efficient codebooks for category-level object recognition. An SVM with histogram intersection kernel is used for classification. Please, see attached README for more details ;-)
ALCALA_LAVW LAVWUniversity of Alcalá - GRAMRoberto J. López Sastre, Saturnino Maldonado BascónWith this submission we present an approach to perform LOCAL Aggregation of Visual Words (LAVW). Our aim is to incorporate into a traditional clustering aggregation approach [1] a factor to lead the algorithm to merge only those visual words that are near in the image domain and not only in the descriptor space. Please see attached README.
BERKELEY_POSELETS PoseletsU.C. Berkeley / AdobeLubomir Bourdev, Subhransu Maji, Jitendra MalikThe method is described in the paper: Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations available here: http://www.eecs.berkeley.edu/~lbourdev/poselets
BONN_SVM-SEGM SVM-SegmUniversity of BonnJoão Carreira Fuxin Li Cristian SminchisescuWe compute multiple segmentations of each image, and learn to classify them into one of the 20 classes, using only the annotated 1500 segmentation images. We employ a SVM framework with multiple kernels, that encode shape and appearance with different levels of invariance. To segment a test image, we use simple heuristics to decide which segments to keep, and which label they should get.
BROOKESMSRC_AHCRF AH-CRFOxford Brookes University, Microsoft Research CambridgeLubor Ladicky Chris Russell Pushmeet Kohli Philip H.S. TorrHierarchical CRF with pixel, superpixel, segment and label preference layer. Pixel layer contains unary based on shape filters of 3 features (SIFT / Opponent SIFT / Texton), intensity based pairwise potential, superpixel contains consistency enforcing unary potential and pairwise potential based on EMD distance of histograms of colour, segment layer contains potential based on histograms of features. Solved with alpha expansion.
CASIA_SVM-MULTIFEAT SVM-MultiFeatureInstitute of Automation, Chinese Academy of SciencesGang Cheng Linbo Zhang Aiwen Jiang RongGuo Zhang Baihua Xiao Chunheng WangSvm classifier with multi features. Trained using 5-fold cross-validation. Re-trained on full train+val set with fixed parameters.
CASIA_SVM-PHOG SVM-phogInstitute of Automation, Chinese Academy of Sciences.Rongguo Zhang, Baihua Xiao, Linbo Zhang, Chunheng Wang.Lib-SVM classifier with phog features. Trained using 5-fold cross-validation. Re-trained on full train+val set with fixed parameters. Got the candidate detection windows by segmentation method instead of the sliding way.
CASIA_SVM-PHOG+COLOR SVM-phog+colorInstitute of Automation, Chinese Academy of Sciences.Rongguo Zhang, Baihua Xiao, linbo Zhang, Chunheng Wang.Lib-SVM classifier with phog and colorphog features. Trained using 5-fold cross-validation. Re-trained on full train+val set with fixed parameters.
CNRS_FUSE-KNN-CTS FUSE_KNN_CTSLaborory of Informatics of Grenoble - CNRSGeorges QuénotLate fusion of KNN classifiers outputs from Opponent SIFT filtered by Harris- Laplace and from early fusion of color (4x4x4 RGB histogram) and texture (8 orientations x 5 scales Gabor transform). Trained on trainval and evaluated on test. 6-fold validation is used of KNN parameter tuning.
CNRS_KNN-CT KNN_CTLaborory of Informatics of Grenoble - CNRSGeorges QuénotKNN classifier output from early fusion of color (4x4x4 RGB histogram) and texture (8 orientations x 5 scales Gabor transform). Trained on trainval and evaluated on test. 6-fold validation is used of KNN parameter tuning.
CNRS_KNN-GABOR KNN_GABORLaborory of Informatics of Grenoble - CNRSGeorges QuénotKNN classifier output from texture (8 orientations x 5 scales Gabor transform). Trained on trainval and evaluated on test. 6-fold validation is used of KNN parameter tuning.
CNRS_KNN-HRGB KNN_HRGBLaborory of Informatics of Grenoble - CNRSGeorges QuénotKNN classifier output from color (4x4x4 RGB histogram). Trained on trainval and evaluated on test. 6-fold validation is used of KNN parameter tuning.
CNRS_KNN-OSHL KNN_OSHLLaborory of Informatics of Grenoble - CNRSGeorges QuénotKNN classifier output from Opponent SIFT filtered by Harris- Laplace. Trained on trainval and evaluated on test. 6-fold validation is used of KNN parameter tuning.
CVC_FLAT CVC-FlatComputer Vision Center BarcelonaFahad Shahbaz Khan, Joost van de Weijer, Andrew Bagdanov, Noha Elfiky, David Rojas, Marco Pedersoli, xavier Boix, Pep Gonfaus, Hany salahEldeen, Robert Benavente, Jordi Gonzalez, and Maria Vanrell.Features Detection : Harris Laplace, Color Boosted HarisLaplace, Dense Multi-scale Grid, Blob, and Color Boosted Blob detector. Features Extraction: SIFT , Hue, Color names, Opp-SIFT, C-SIFT and RGSIFT, GIST and spatial pyramids. Vocabulary Construtction: agglomerative information bottleneck method [Vedaldi]. Color Attention: For combining color and shape, we use our top-down color attention method [Khan ICCV 2009]. Learning: We use intersection kernel for learning.
CVC_FLAT-HOG-ESS CVC-flat+detectionComputer Vision Center BarcelonaFahad Shahbaz Khan, Joost van de Weijer, Andrew Bagdanov, Noha Elfiky, David Rojas, Marco Pedersoli, xavier Boix, Pep Gonfaus, Hany salahEldeen, Robert Benavente, Jordi Gonzalez, and Maria Vanrell.We combine the CVC_flat image classification results, with the scores of the HOG pyramids detector, and ESS detector. For combination we use a method closely related to [Harzallah ICCV 2009].
CVC_HOCRF CVCComputer Vision Center - BarcelonaXavier Boix, Josep Maria Gonfaus, Fahad Kahn, Joost van de Weijer, Andrew Bagdanov, Marco Pedersoli, Jordi González, Joan Serrat-High Order CRF. -Learning of the probabilistic model. -Superpixel based. -BOW on superpixels + BOW on context. -Global classifier used in competition 1. -Superpixel classifiers are trained only on his usual context of the object. -Features: SIFT + RGB histogram.
CVC_HOG-BOW CVC-detComputer Vision Center BarcelonaMarco Pedersoli, Andrew Bagdanov, Joost van de Weijer, Fahad Shahbaz Khan, Davide Modolo, Jordi Gonzàlez and Juan José Villanueva.Base Detector: Dense sliding window search using HOG pyramids. Iterative linear SVM re-training with re-localization of the positives examples and hard negatives selection. Refinement: Re-scoring of the first 100 detection using SVM intersection kernel (trained adding random negative examples) and additional features (BOW pyramid).
CVC_HOG-BOW-ESS-FLAT CVC-det-fusionComputer Vision Center BarcelonaMarco Pedersoli, Joost van de Weijer, Andrew Bagdanov, Fahad Shahbaz Khan, Davide Modolo, Jordi Gonzàlez and Juan José Villanueva.Base Detector: CVC-det and ESS detectors are combined using an OR strategy Combination: detector output is combined with classification CVC-flat according to [Harzallah ICCV09]
CVC_PLUS CVC-plusComputer Vision Center BarcelonaFahad Shahbaz Khan, Joost van de Weijer, Andrew Bagdanov, Noha Elfiky, David Rojas, Marco Pedersoli, xavier Boix, Pep Gonfaus, Hany salahEldeen, Robert Benavente, Jordi Gonzalez, and Maria Vanrell.All of CVC-flat + additional SIFT pyramids histograms. Classification has been performed with SVM with Chi-square Kernel.
FIRSTNIKON_AVGSRKDA bindernakajima_avgsrkdaFraunhofer FIRST, Nikon Corp.Alexander Binder, Fraunhofer FIRST Shinichi Nakajima, Nikon Corp. Motoaki Kawanabe, Fraunhofer FIRSTsame features as 177 but with average kernel srkda and kernel width opt
FIRSTNIKON_AVGSVM bindernakajima_avgsvmFraunhofer FIRST, Nikon Corp.Alexander Binder, Fraunhofer FIRST Shinichi Nakajima, Nikon Corp. Motoaki Kawanabe, Fraunhofer FIRSTsame features as 177 but with average kernel svm and kernel width opt
FIRSTNIKON_BOOSTSRKDA bindernakajima_boostsrkdaFraunhofer FIRST, Nikon Corp.Alexander Binder, Fraunhofer FIRST Shinichi Nakajima, Nikon Corp. Motoaki Kawanabe, Fraunhofer FIRSTsame features as 177 but with boosting over srkda and kernel width opt
FIRSTNIKON_BOOSTSVMS bindernakajima_boostsvmsFraunhofer FIRST, Nikon Corp.Alexander Binder, Fraunhofer FIRST Shinichi Nakajima, Nikon Corp. Motoaki Kawanabe, Fraunhofer FIRSTsame as 177 features, boosted svms
FIRST_L2MKL bindernakajima_L2MKLFraunhofer FIRSTAlexander Binder, Fraunhofer FIRST Shinichi Nakajima, Nikon Corp. Motoaki Kawanabe, Fraunhofer FIRSTsame features, but L2MKL
HAS_FISHSIFT-FISHSEG FishSIFT_cluSegData Mining and Web Search Group, Hungarian Academy of SciencesBalint Daroczy, Andras Benczur, Dora Erdos, Zsolt Fekete, Istvan PetrasLogistic regression with Fisher kernel SIFT and Fisher kernel Segmentation. Trained on train+val.
IIR_SVM-ROI-IC SVM-Combined ROI and image codebooksInstitute for Infocomm Research, SingaporeGAO Yan, LIM Joo Hwee, LI Yiqun, GOH Hanlinfeature: HSVsift + spatial pyramid; classifer: SVM with histogram intersection kernel.
KERLE_SVM-DENSESIFT SVM-SIFTMarc KerleLibsvm classifier with dense SIFT features. Parameter selection using the val set.
LEAR_CHI-SVM-MULT CHI-SVM + Multiple featuresINRIA GrenobleAdrien Gaidon Cordelia Schmid Marcin MarszalekSame as 2008's Adrien Gaidon Submission.
LEAR_CHI-SVM-MULT-LOC CHI-SVM + Multiple features + Comb. with localiz.INRIA GrenobleHedi Harzallah Cordelia Schmid Frederic Jurie Adrien Gaidonsee classification method of "Combining efficient object localization and image classification, ICCV'09"
LEAR_CHI-SVM-SIFT-HOG CHI-SVM-SIFT-HOGINRIA GrenobleHedi Harzallah Cordelia Schmid and Frederic Jurie2 stage classification (linear SVM, then chi square SVM) with HOG and dense SIFT features.
LEAR_CHI-SVM-SIFT-HOG-CLS CHI-SVM-SIFT-HOG + Comb. with classificationINRIA GrenobleHedi Harzallah Cordelia Schmid Frederic Jurie Adrien Gaidonsee localization method of "Combining efficient object localization and image classification, ICCV'09"
LEAR_SEGDET Combo-Seg-DetLEAR, INRIA GrenobleTingting Jiang, Cordelia Schmid, Frederic Jurie, Hedi Harzallah, Adrien GaidonSVM classifier based on Bag of Words on masks. Trained with Intersection Kernel SVM and improved by detection
LEOBEN_DENSESIFT MUL-baselineUniversity of LeobenMartin Antenreiter, Thomas Jaksch, Peter AuerSvm classifier with dense SIFT features. Trained using 5-fold cross-validation. Re-trained on full train+val set with fixed parameters.
LEOBEN_SCC-200 SCC-200University of LeobenMartin Antenreiter, Thomas Jaksch, Peter AuerSVM classifiers with various SIFT features. Trained using 5-fold cross-validation. Re-trained on full train set with fixed parameters. Combined classifier trained using 5-fold cross-validation on val set. Re-trained on full val set with fixed parameters.
LEOBEN_SCC-CLS SCC-CLSUniversity of LeobenMartin Antenreiter, Thomas Jaksch, Peter AuerSVM classifiers with various SIFT features. Trained using 5-fold cross-validation. Re-trained on full train set with fixed parameters. Class-wise selection of classifiers for combination. Several combined classifiers trained using 5-fold cross-validation on val set, re-trained on full val set with fixed parameters. Choice of final classifier per class based on CV performance.
LIG_MIRIM-VPH LIG_MRIM_VPHLIG, University Joseph Fourier - Grenoble 1Rami Albatal , Philippe Mulhem, Yves ChiaramellaWe use Harris-Laplace interest regions detector with rgSIFT descriptor, then we construct sets of interest regions (Visual Phrases) in each image in BOVW representation, then we use SVM classifier for classifing individual sets.
LIG_MRIM-COLORSIFT LIG_MRIM_ColorSiftLIG, University Joseph Fourier - Grenoble 1Rami Albatal , Philippe Mulhem, Yves ChiaramellaHarris-Laplace detector + rgSift descriptor, codebook of 4000 bin created using k-means clustering (classical method proposed by Koen E. A. van de Sande)
LIG_MRIM-FUSION LIG_MRIM_FusionLIG, University Joseph Fourier - Grenoble 1Rami Albatal , Philippe Mulhem, Yves Chiaramella, Georges QuénotWe fuse 5 Svm classifier : 1- rgSift (codebook 4000 bin), 2- Opponent Sift (codebook 4000 bin), 3- hg104 (early fusion of rbg histogram and gabor histogram), 4- Visual Phrase classifier (used in LIG_MRIM_VPH method), 5- another Visual phrase mehode based on a filtering of interest regions. Fusion based on linear combination of SVM results.
LIP6_HB-SPK-SVM HB_SPK_SVMUPMC LIP6David Picard, Nicolas Thome, Matthieu CordSVM classifier over SPK of dense SIFT based visual codebook (4000 entries).
LIP6_SS-SPK-SVM SS_SPK_SVMUPMC LIP6David Picard, Nicolas Thome, Matthieu CordSVM classifier with SPK of dense SIFT using 4000 words and semi soft assignment.
LIRIS_BASELINE LIRIS_BaselineLIRIS, Ecole Centrale de Lyon, FranceChao ZHU, Huanzhang FU, Charles-Edmond BICHOT, Emmanuel Dellandrea, Liming CHENLibSVM classifier with dense SIFT, Color (CCV, CH, CM), Texture (LBP, GLCM) and Shape (EH) features. A vocabulary of 4000 codewords is created for bag-of-features model of SIFT, hard assignment is adapted. The chi square distance is uesd as the kernel of SVM for all kinds of features. Scores of different kinds of features are fused as the final classification score by mean. Trained on 'train' set, and parameters are tuned on 'val' set.
LIRIS_EER LIRIS_EERLIRIS, Ecole Centrale de Lyon, FranceChao ZHU, Huanzhang FU, Charles-Edmond BICHOT, Emmanuel Dellandrea, Liming CHENLibSVM classifier with dense SIFT, Color (CCV, CH, CM), Texture (LBP, GLCM) and Shape (EH) features. A vocabulary of 4000 codewords is created for bag-of-features model of SIFT, hard assignment is adapted. The chi square distance is uesd as the kernel of SVM for all kinds of features. Scores of different kinds of features are fused as the final classification score according to their EER (Equal Error Rate). Trained on 'train' set, and parameters are tuned on 'val' set.
LIRIS_SOFT-BASELINE LIRIS_soft_BaselineLIRIS, Ecole Centrale de Lyon, FranceChao ZHU, Huanzhang FU, Charles-Edmond BICHOT, Emmanuel Dellandrea, Liming CHENLibSVM classifier with dense SIFT, Color (CCV, CH, CM), Texture (LBP, GLCM) and Shape (EH) features. A vocabulary of 4000 codewords is created for bag-of-features model of SIFT, soft assignment is adapted. The chi square distance is uesd as the kernel of SVM for all kinds of features. Scores of different kinds of features are fused as the final classification score by mean. Trained on 'train' set, and parameters are tuned on 'val' set.
LIRIS_SOFT-EER LIRIS_soft_EERLIRIS, Ecole Centrale de Lyon, FranceChao ZHU, Huanzhang FU, Charles-Edmond BICHOT, Emmanuel Dellandrea, Liming CHENLibSVM classifier with dense SIFT, Color (CCV, CH, CM), Texture (LBP, GLCM) and Shape (EH) features. A vocabulary of 4000 codewords is created for bag-of-features model of SIFT, soft assignment is adapted. The chi square distance is uesd as the kernel of SVM for all kinds of features. Scores of different kinds of features are fused as the final classification score according to their EER (Equal Error Rate). Trained on 'train' set, and parameters are tuned on 'val' set.
MIZZOU_DEF-HOG-LBP DEF-HOG-LBPThe University of MissouriXiaoyu Wang Wei Gong Xutao Lv Tony HanDeformable model with HOG-LBP features.
MIZZOU_DEF-HOG-LBP-WOCONTEXT DEF-HOG-LBP-WOCONTEXTThe University of MissouriXiaoyu Wang, Wei Gong, Xutao Lv, Tony X.HanDeformable models using HOG-LBP features. Bounding box are trained for prediction.
MPI_A2 MPI-A2Max Planck Institute for Biological CyberneticsSebastian Nowozin, Christoph LampertLog-linear tree-structured CRF on superpixel representation with simple features and many parameters. All parameters jointly trained using conditional log-likelihood. Training exclusively using seg-trainval (1499 images). Model selection performed using seg-train/seg-val, parameters fixed and one final training on seg-trainval.
MPI_STRUCT MPIstructMax Planck Institute for Biological CyberneticsChristoph LampertStructured Regression with linear kernel for bounding box prediction. Nonlinear SVM trained on trainval predictions for re-ranking.
NECUIUC_CDCV NEC_UIUC_CLS_CDCVNEC Laboratories America and University of Illinois at Urbana-ChampaignYihong Gong, Fengjun Lv, Jinjun Wang, Chen Wu, Wei Xu, Jianchao Yang, Kai Yu, Xi Zhou, Thomas HuangNonlinear classifiers implemented via linear classification methods on nonlinear mapping of SIFT features, obtained by unsupervised local linear & nonlinear coding methods. Class dependent cross validation.
NECUIUC_CLS-DTCT NEC_UIUC_CLS&DTCTNEC Laboratories America and University of Illinois at Urbana-ChampaignYihong Gong, Fengjun Lv, Jinjun Wang, Chen Wu, Wei Xu, Jianchao Yang, Kai Yu, Xi Zhou, Thomas Huang(1) Classification: nonlinear classifiers implemented via linear classification methods on nonlinear mapping of SIFT features, obtained by unsupervised local linear & nonlinear coding methods. The result is further enhanced by an multi-instance learner using results from the detection task; (2) Detection: Probabilistic inference on segments of an image to find candidate class-specific foregrounds. Linear classifiers used to scan those candidates to get the details of bounding boxes.
NECUIUC_LL-CDCV NEC_UIUC_CLS_LL_CDCVNEC Laboratories America and University of Illinois at Urbana-ChampaignYihong Gong, Fengjun Lv, Jinjun Wang, Chen Wu, Wei Xu, Jianchao Yang, Kai Yu, Xi Zhou, Thomas HuangNonlinear classifiers implemented via linear classification methods on nonlinear mapping of SIFT features, obtained by unsupervised local linear coding methods.
NECUIUC_LN-CDCV NEC_UIUC_CLS_LN_CDCVNEC Laboratories America and University of Illinois at Urbana-ChampaignYihong Gong, Fengjun Lv, Jinjun Wang, Chen Wu, Wei Xu, Jianchao Yang, Kai Yu, Xi Zhou, Thomas HuangNonlinear classifiers implemented via linear classification methods on nonlinear mapping of SIFT features, obtained by unsupervised local nonlinear coding methods.
NECUIUC_SEG NEC_UIUC_SEGNEC Laboratories America and University of Illinois at Urbana-ChampaignYihong Gong, Fengjun Lv, Jinjun Wang, Chen Wu, Wei Xu, Jianchao Yang, Kai Yu, Xi Zhou, Thomas HuangBased on our detection method.
OXFORD_MKL VGG-MKLOxford UniversityA. Vedaldi, V. Gulshan, M. Varma, A. ZissermanThe method is described in "Multiple Kernels for Object Detection" A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman ICCV'09
RITSU_AKF RitsOM_AKFRitsumeikan UniversityXian-Hua Han, Yen-Wei Chen, Xiang RuanLibSVM classifier with Bag-of-feature and PHOG shape feature. Fusion the multiple descriptprs with avarage Kernel. Trained on full train+val set with fixed parameters.
RITSU_ASF RitsOM_ASFRitsumeikan UniversityXian-Hua Han, Yen-Wei Chen, Xiang RuanLibSVM classifier with Bag-of-feature and PHOG shape feature. Fusion the multiple descriptprs with avarage similarites. Trained on full train+val set with fixed parameters.
RITSU_WSF RitsOM_WSFRitsumeikan UniversityXian-Hua Han, Yen-Wei Chen, Xiang RuanLibSVM classifier with Bag-of-feature and PHOG shape feature. Fusion the multiple descriptprs with Weighted similarites. Trained on full train+val set with fixed parameters.
TSINGHUA_ALL-SVM-BOOST all_fusedIMG, Tsinghua UniversityBinbin Cao34 features are used. Models are trained by rankboost. Results are fused by sum.
TSINGHUA_SVM-SEG-HOG SVM-SEG-HOGNational Tsing Hua UniversityBo-Cheng Chen Kevin Soong Terry Luo Chia-Mao Hung Shin-Hung JiTrained on full train+val set with fixed parameters.
TTIWEIZ_NNHOUGH NN-HoughToyota Technological Institute at Chicago and Weizmann Institute of ScienceGregory Shakhnarovich, Daniel GlasnerWe find nearest neighbors of densely sampled patches (on multiscale pyramid) in a database of patches inside bounding boxes of object in training data. Each match votes for a bounding box, with a weight learned for all DB patches by gradient descent. Scores based on these votes are used to select a small set of candidate detections. Then posterior is estimated using logistic regression and scale prior. Finally, detections for different views and with different descriptors are pooled.
UC3M_GEN-DIS UC3M_Gen_DisUniversidad Carlos III de MadridIván González Díaz Fernando Díaz-de-María This is a two-layered approach. The bottom layer is implemented using a generative model, (an extension of the one in attached document), that incorporates the spatial structure of visual documents. Its purpose to work at the region level and generate a set of probabilities for both documents and regions (detection/segmentation). The upper layer is implemented by discriminative models (SVMs) that classify images based on the output probabilities of the generative algorithm (classification).
UCI_LAYEREDSHAPE Layered shape modelsUniversity of California at IrvineCharless Fowlkes Sam Hallman Deva Ramanan Yi YangWe use the detector from Felzenswalb et al to train models using the 2009 det trainval data. We then train our segmentation system using the detector and the 2009 seg trainval data. Our segmentation system is based on category-specific part-based shape priors. We integrate these priors with instance-specific color models estimated for each putative bounding box. Models from high-scoring bounding boxes are composited together, and are used to label individual superpixels with a category label.
UCLA_SUPERPIXELCRF superpixelcrfUCLABrian Fulkerson, Andrea Vedaldi, Stefano SoattoThis is a direct implementation of Class Segmentation and Object Localization with Superpixel Neighborhoods, B. Fulkerson, A. Vedaldi, and S. Soatto. ICCV 2009. It was trained on train+val, with the number of neighbors fixed at 3. Source code will be available during the conference. See http://vision.ucla.edu/~brian/superpixelcrf.html for more details.
UVASURREY_BASELINE UvASurrey-BaseUniversity of Amsterdam and University of SurreyKoen van de Sande, Fei Yan, Atif Tahir, Jasper Uijlings, Mark Barnard, Hongping Cai, Theo Gevers, Arnold Smeulders, Krystian Mikolajczyk, Josef KittlerThis run is directly comparable to the SoftColorSIFT run from last year. It uses the same dense sampling, Harris-Laplace keypoints and 4 Color SIFT descriptors, equal kernel weights and Support Vector Machines. It uses color descriptor software available from http://www.colordescriptors.com
UVASURREY_MKFDA+BOW MK-FDA + BoWUniversity of Amsterdam, University of SurreyK. Sande J. Uijlings M. Barnard F. Yan H. Cai P. Koniusz A. Tahir K. Mikolajczyk J. Kittler T. Gevers A. Smeulderslearning the weights of kernels that are generated using various sampling techniques and descriptors. the kernels weights are learnt in non-sparse multiple kernel fisher discriminant analysis.
UVASURREY_TUNECOLORKERNELSEL UvASurrey-TunableColorKernelSelectionUniversity of Amsterdam and University of SurreyKoen van de Sande, Fei Yan, Atif Tahir, Jasper Uijlings, Mark Barnard, Hongping Cai, Theo Gevers, Arnold Smeulders, Krystian Mikolajczyk, Josef KittlerThis run uses new tunable color filters on top of the existing color descriptors, several SIFT variations and a combination of kernel selection and multiple kernel fisher discriminant analysis.
UVASURREY_TUNECOLORSPECKDA UvASurrey-TunableColorSpectralKDAUniversity of Amsterdam and University of SurreyKoen van de Sande, Atif Tahir, Fei Yan, Jasper Uijlings, Mark Barnard, Hongping Cai, Theo Gevers, Arnold Smeulders, Krystian Mikolajczyk, Josef KittlerThis run uses new tunable color filters on top of the existing color descriptors, several SIFT variations and a special form of spectral kernel discriminant analysis.
UVA_BAGOFWINDOWS UvA-BagOfWindowsUniversity of AmsterdamKoen E.A. van de Sande Jasper R.R. Uijlings Theo Gevers Arnold W.M. SmeuldersEfficient subwindow search with dense SIFT, a bag-of-windows classifier and weighting using the UvASurrey-Base run. Descriptor software available from http://www.colordescriptors.com
UVA_BOWSEG UvABoWSegUniversity of AmsterdamJ.R.R. Uijlings K. van de Sande A.W.M. Smeulders R.J.H. SchaThe order of the images is created using our BoW classifier. Afterwards, a segmentation algorithm proposes a limited set of bounding boxes which is evaluated using again BoW with Spatial Pyramid and chi^2 SVM kernel
UoCTTI_LSVM-MDPM LSVM-MDPMUniversity of Chicago and TTI-CPedro Felzenszwalb (UChicago), Ross Girshick (UChicago), David McAllester (TTI-C)Our submission is based on [1]. Each class is represented by a mixture of deformable part models (6 components with 6 parts per class). We also have a binary mask associated to each component of each class to generate pixel-level segmentations from detections. The models were trained from bounding boxes. The segmentation masks were trained from segmentations. [1] Felzenszwalb, Girshick, McAllester, Ramanan, "Object Detection with Discriminatively Trained Part Based Models", PAMI (preprint)
(CL_13oct09) CL_13oct09--MPIhybrid