Combining local and global Bag-of-Words
representations for semantic segmentation.
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Motivation

What'’s inside a local segment?



Motivation

...and with context? [FulkersonlCCV09]



Motivation

Global classifier
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Contributions

m Novel segmentation method that jointly uses global and
local information.

m Concatenating the description of a superpixel and its
context.

m Learn a per class normalization of the classification scores.
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Smoothness term
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Smoothness term




Smoothness term

smoothness(s;, s;, ¢j) = A0(cj)Njjo(si, sj)
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Smoothness term
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Smoothness term

smoothness(s;, s;, ¢j) = A0(c;)N;jo(si, sj)
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Local term
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Local term

Bag-of-Words:




Local term

Bag-of-Words:

m Inside Region (20.02%)
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Local term

Bag-of-Words:
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m Contextual Regions (27.14%)
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Local term

Bag-of-Words:
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m Concatenate Both Regions (29.53%)

{WMM, I.d..l-l...J_-lﬂ}



Local term

S S
Detector:

m Dense Grid with 50% of overlapping between patches.
m 4 different scales.

Description:
m Shape feature: SIFT. (28.34%)

m Color feature: RGB Histogram. (22.5%)
m Concatenate SIFT + Color histogram. (29.53%)



Local term

m 20 SVM with Intersection Kernel.
m 20.000 training samples for each class.
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One class against all classes.




Local term

m 20 SVM with Intersection Kernel.
m 20.000 training samples for each class.

One class against its background. Similar to [CsurkaBMCV08].



Consistency term
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Consistency term

m g €{0,1}
m All global nodes are connected to each superpixel node.

consistency(s;,G) = 8M; [[ (1 -(si.f))



Consistency term

Equivalent problem:
m Substitute g; with ONE node g € {Lcomp}-

m Each label in {Lcomp} represents a combination of
classes in the image.

m Thus, g has a total amount of 2N possible labels.

Too many labels to be solvable in reasonable time.




Consistency term

Approximate problem:
m Use only the most likely L£comp:

m Discard objects with very low global classification rate
(< 0.05).
m Possible combinations of objects in the same image.

m Solvable with standard graph-cuts (less than 2 seconds).



Global term
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Global term

[KahnICCV09]



Global term

Feature Detection
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Grid Sampling

Harris-Laplace

Boosted HarrisLaplace

Blob detector

Boosted Blob detector

Spatial Pyramid (2x2)
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[KahllICCVOQ] Spatial pyramid (123}




Global term

Feature Detection

Boosted Harris-Laplace
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Global term

[KahnlCCV09]

Feature Detection Codebook Model
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Global term

[KahnlCCV09]
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Global term

[KahnlCCV09]
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Learning the parameters

m The best configuration maximizes the geometric mean of
the performance of all classes.

m We obtain new configurations in a Gibbs sampler manner:
X~ N (X K(8)

m 2-fold cross validation.

m Learning stages:

Weights of the graphical model. (29.53%)
Per class normalization of the local term. (31.25%)
Per class normalization of the global term. (35.1%)



Conclusions

m We propose a novel segmentation method that jointly uses
global and local information.

m Using as negative examples only the segments that
appear in the same image of positive samples decreases
the variability of the data.

m Concatenating both the description of a superpixel and its
context is helpful for classification. (+2.5%)

m We empirically prove that a per class normalization of the
observed terms is able to efficiently equalize classification
scores. (+5.6%)



Gracies!
Thank you!

Arigato!

S
B Centre de Visi6 per Computador *
UNR I=RCyY




