The PASCAL Visual Object Classes Challenge 2009 (VOC2009)

Part 3 – Segmentation Challenge

Mark Everingham
Luc Van Gool
Chris Williams
John Winn
Andrew Zisserman

Segmentation Challenge

For each pixel, predict the class of the object containing that pixel or 'background'.

- Competition 5: Train on the supplied data
 - Which methods perform best given specified training data?
 - Can use bounding box data as well as seg. data
- Competition 6: Train on any (non-test) data
 - New for VOC 2009
 - Allows for use of own data

Annotation

- Annotation in one session with <u>written guidelines</u>
 - Segmentation is 'refinement' of bounding box (but may go outside it)
 - Segmentation accurate to within 5-pixel boundary region which is marked 'void'

- 1-pixel wide structures (whiskers, wires) can be ignored
- Surface objects considered part of the object (e.g. items on a table)

Example annotations

Example annotations

Image

Object segmentation

Class segmentation

Training/validation data sets

- 2009 data training and validation sets include and extend 2008 data set – allows comparison
- We now have over 3,200 precisely segmented objects available for training (~50% more than last year):

Number of:	Training	Validation	Total
Images	749 (511)	750 (512)	1499 (1023)
Objects	1601 (1166)	1610 (1203)	3211 (2369)

Evaluation metric

- Metric chosen because:
 - Allows per-class participation
 - Penalises both over- and under-estimates
- Overall evaluation metric is average over all classes (including background)

Methods

- 12 direct and 10 'automatic' entries
 - double last year!! (6 direct, 5 automatic)
- Features:
 - SIFT, RGB, Textons, randomized forests
- Methods:
 - Multiple segmentations, superpixels
 - Hierarchical CRFs, high order cliques
 - Combined with classification/detection entries
 - Instance level part models and masks
 - 3D information

Image

Ground truth

Bonn

CVC

UCI

UoCTTI

Results

Comp 5: All 12 segmentation entries beat all 11 automatic detection entries (not shown)

	Mean	back- ground	aero- plane	bicycle	bird	boat	bottle	bus	car	cat	chair	cow	dining table	dog	horse	motor- bike	person	potted plant	sheep	sofa	train	tv/ monitor
Bonn	36.3	83.9	64.3	21.8	21.7	32.0	40.2	57.3	49.4	38.8	5.2	28.5	22.0	19.6	33.6	45.5	33.6	27.3	40.4	18.1	33.6	46.1
BrookesMSRC	24.8	79.6	48.3	6.7	19.1	10.0	16.6	32.7	38.1	25.3	5.5	9.4	25.1	13.3	12.3	35.5	20.7	13.4	1 <i>7</i> .1	18.4	37.5	36.4
CVC	34.5	80.2	67.1	26.6	30.3	31.6	30.0	44.5	41.6	25.2	5.9	27.8	11.0	23.1	40.5	53.2	32.0	22.2	37.4	23.6	40.3	30.2
LEAR	25.7	79.1	44.6	15.5	20.5	13.3	28.8	29.3	35.8	25.4	4.4	20.3	1.3	16.4	28.2	30.0	24.5	12.2	31.5	18.3	28.8	31.9
MPI	15.0	70.9	16.4	8.7	8.6	8.3	20.8	21.6	14.4	10.5	0.0	14.2	17.2	7.3	9.3	20.3	18.2	6.9	14.1	0.0	13.2	13.2
NEC-UIUC	29.7	81.8	41.9	23.1	22.4	22.0	27.8	43.2	51.8	25.9	4.5	18.5	18.0	23.5	26.9	36.6	34.8	8.8	28.3	14.0	35.5	34.7
NEC-UIUC2	28.3	81.5	39.3	20.9	22.6	21.7	26.1	37.1	51.5	25.2	5.7	17.5	15.7	24.2	27.4	35.3	33.0	7.9	23.4	12.5	32.1	33.3
<i>U</i> С3 <i>M</i>	14.5	69.8	20.8	9.7	6.3	4.3	7.9	19.7	21.8	7.7	3.8	7.5	9.6	9.5	12.3	16.5	16.4	1.5	14.2	11.0	14.1	20.3
UCI	24.7	80.7	38.3	30.9	3.4	4.4	31.7	45.5	47.3	10.4	4.8	14.3	8.8	6.1	21.5	25.0	38.9	14.8	14.4	3.0	29.1	45.5
UCLA	13.8	51.2	13.9	7.0	3.9	6.4	8.1	14.4	24.3	12.1	6.4	10.3	14.5	6.7	9.7	23.6	20.0	2.3	12.6	12.3	17.0	13.2
UoCTTI	29.0	78.9	35.3	22.5	19.1	23.5	36.2	41.2	50.1	11.7	8.9	28.5	1.4	5.9	24.0	35.3	33.4	35.1	27.7	14.2	34.1	41.8
	_	_		_		_	_															

Com	Comp o: Trainea on external data																					
	mean	back- ground	aero- plane	bicycle	bird	boat	bottle	bus	car	cat	chair	cow	dining table	dog	horse	motor- bike	person	potted plant	sheep	sofa	train	tv/ monitor
Berkeley		78.5															36.3					
BrookesMSRC	24.5	79.6	40.1	9.0	17.6	1.5	20.6	34.9	29.4	24.1	6.1	13.8	28.3	13.3	9.3	31.1	23.0	1 <i>7</i> .1	18.0	24.7	36.1	37.5

Comparison on VOC 2008 data

	Mean	back- ground	aero- plane	bicycle	bird	boat	bottle	bus	car	cat	chair	cow	dining table	dog	horse	motor- bike	person	potted plant	sheep	sofa	train	tv/ monitor
Bonn	36.2	83.5	52.8	22.4	20.7	35.8	46.1	50.5	39.9	35.3	6.1	33.1	25.2	19.7	42.7	50.6	36.8	23.5	43.6	16.7	26.8	47.8
CVC	34.8	79.4	56.3	26.6	40.6	36.1	27.3	48.4	37.9	23.4	9.1	21.4	10.1	24.5	41.2	56.4	32.8	26.8	39.2	21.9	41.0	31.1
XRCE 2008	25.4	75.9	25.8	15.7	19.2	21.6	17.2	27.3	25.5	24.2	7.9	25.4	9.9	17.8	23.3	34.0	28.8	23.2	32.1	14.9	25.9	37.3
Brookes 2008	20.1	75.0	36.9	4.8	22.2	11.2	13.7	13.8	20.4	10.0	8.7	3.6	28.3	6.6	1 <i>7</i> .1	22.6	30.6	13.5	26.8	12.1	20.1	24.8

- New methods improved significantly on 2008 performance \underline{but} had access to $\sim 50\%$ more training data
- Some new method beat every 2008 method on each class
- Bonn beat XRCE (2008 winner) on 20/21 classes

Prizes

Winner: Bonn

João Carreira, Fuxin Li, Cristian Sminchisescu University of Bonn

Runner up: CVC

Xavier Boix, Josep Maria Gonfaus, Fahad Kahn, Joost van de Weijer, Andrew Bagdanov, Marco Pedersoli, Jordi González, Joan Serrat Computer Vision Center Barcelona

Congratulations!!

Many thanks to all teams for their hard work in taking part. The segmentation competition is now firmly established as a VOC challenge.