LSVM-MDPM

LSVM - Mixtures of Deformable Part Models

Pedro Felzenszwalb, Ross Girshick University of Chicago David McAllester TTI-C

Presented by Deva Ramanan, UC Irvine

Reference

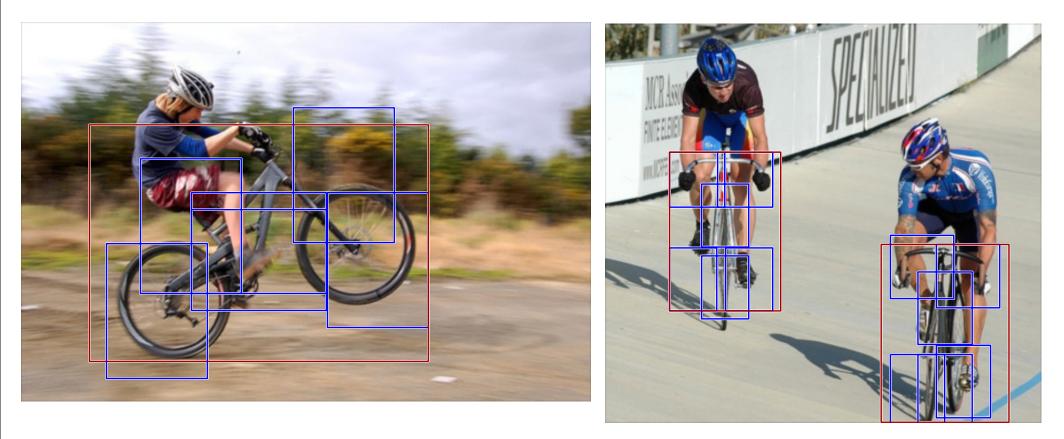
Object Detection with Discriminatively Trained Part Based Models Pedro Felzenszwalb, Ross Girshick, David McAllester, Deva Ramanan IEEE Transactions on Pattern Analysis and Machine Intelligence (preprint)

Paper describes general approach and results with 2 component models For the 2009 competition we trained 6 component models

Code for 2 component models is available online (new version will be available "soon")

http://www.cs.uchicago.edu/~pff/latent

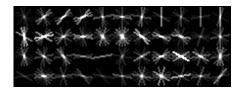
Overview of our models

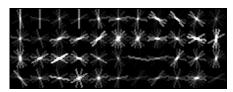


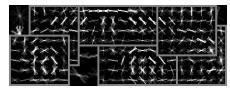
- Mixture of deformable part models (pictorial structures)
- Each component has global template + deformable parts
 - Templates model HOG features
- Fully trained from bounding boxes alone

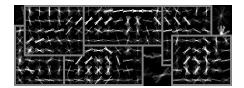
6 component car model

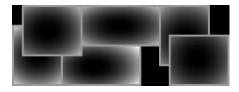
2 of 3 symmetric pairs shown

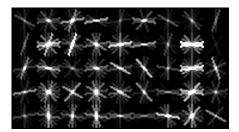


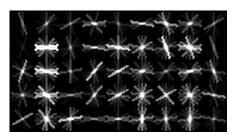




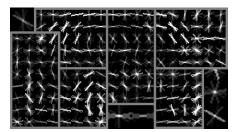


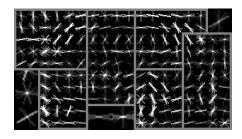


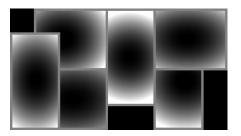


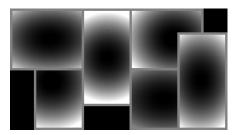


root filters coarse resolution

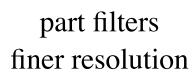








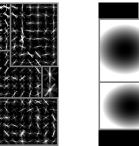
deformation models

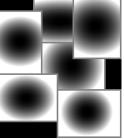


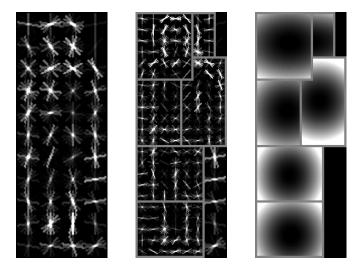
6 component person model

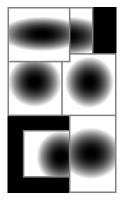
1 component from of each symmetric pair





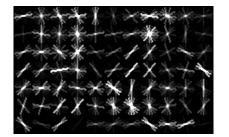


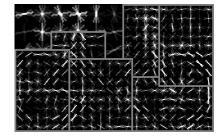


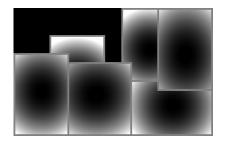


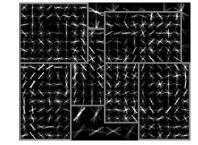
6 component bicycle model

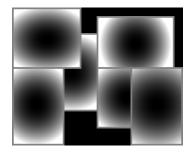
1 component from of each symmetric pair



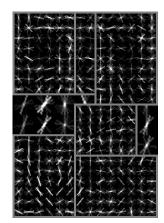


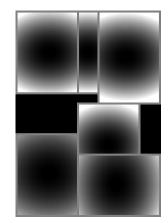




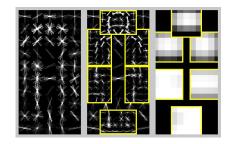


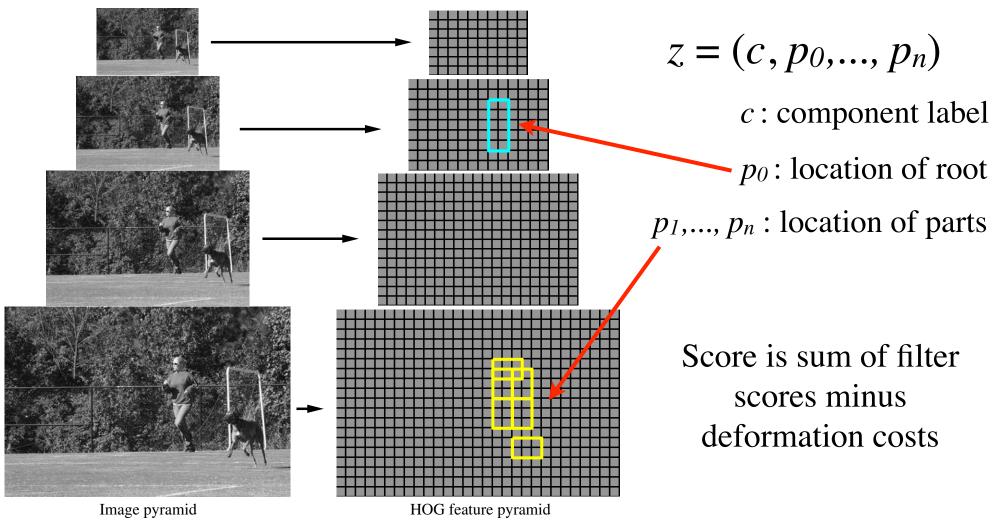






Object hypothesis

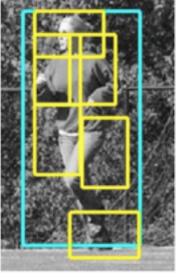




Multiscale model captures features at two-resolutions

Score of a hypothesis (single component)

$$\operatorname{score}(p_0, \dots, p_n) = \begin{bmatrix} \operatorname{``data term''} \\ \sum_{i=0}^{n} F_i \cdot \phi(H, p_i) \\ i = 1 & \operatorname{displacements} \\ \text{filters} \end{bmatrix} - \begin{bmatrix} \sum_{i=1}^{n} d_i \cdot (dx_i^2, dy_i^2) \\ displacements \\ deformation parameters \end{bmatrix}$$



concatenation filters and deformation parameters

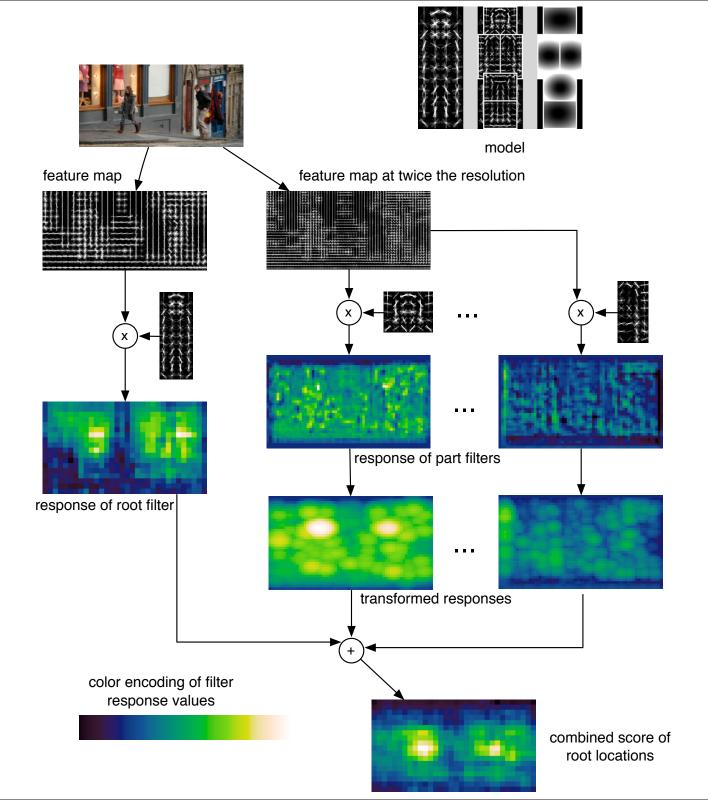
concatenation of HOG features and part displacement features

Matching

- Define an overall score for each root location
 - Based on best placement of parts

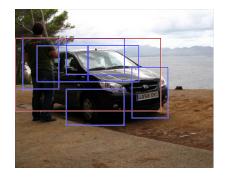
$$\operatorname{score}(p_0) = \max_{p_1,\ldots,p_n} \operatorname{score}(p_0,\ldots,p_n).$$

- High scoring root locations define detections
 - "sliding window approach"
- Efficient computation: dynamic programming + generalized distance transforms (max-convolution)



Post-processing detections

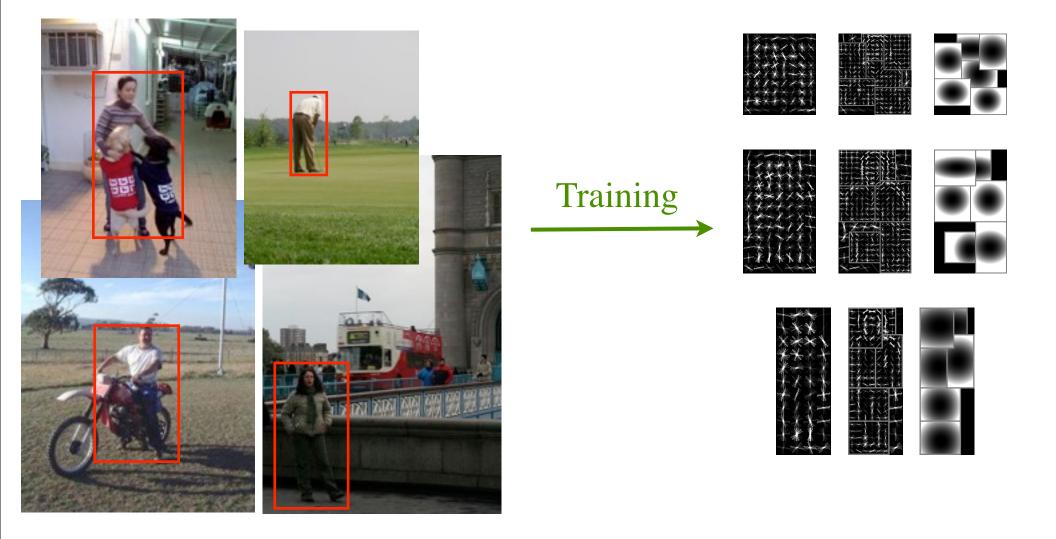
- NMS
 - Remove multiple detections using overlap criteria
- Bounding box prediction
 - Use part locations to predict object bounding box



- "Context rescoring"
 - Rescore a detection based on its location within the image and maximum score of detections from each class

Training

- Training data consists of images with labeled bounding boxes
- Need to learn the model structure, filters and deformation costs



Latent SVM (MI-SVM)

Classifiers that score an example x using

$$f_{\beta}(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z)$$

 β are model parameters z are latent values

Training data $D = (\langle x_1, y_1 \rangle, \dots, \langle x_n, y_n \rangle)$ $y_i \in \{-1, 1\}$ We would like to find β such that: $y_i f_\beta(x_i) > 0$

Minimize

$$L_D(\beta) = \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^n \max(0, 1 - y_i f_\beta(x_i))$$

Latent SVM training

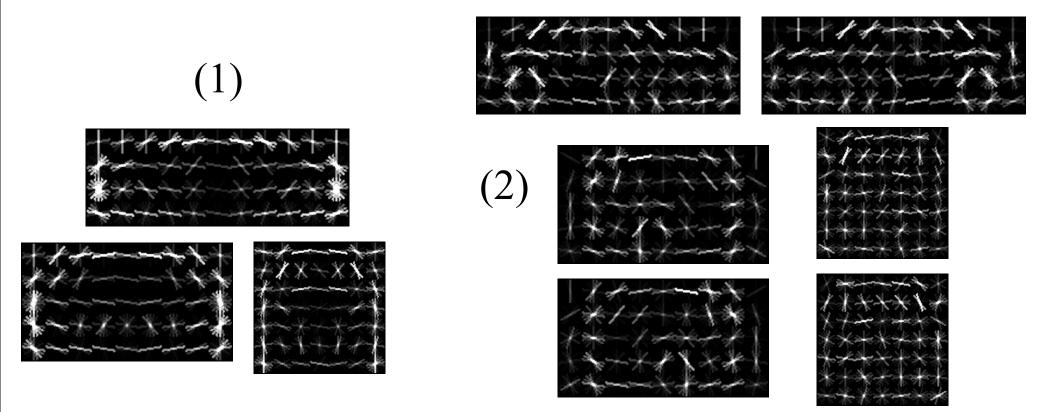
$$f_{\beta}(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z)$$

$$L_D(\beta) = \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^n \max(0, 1 - y_i f_\beta(x_i))$$

- Convex if we fix *z* for positive examples
- Optimization:
 - Initialize β and iterate:
 - Pick best *z* for each positive example
 - Optimize β via gradient descent with data-mining

Training 6 component models

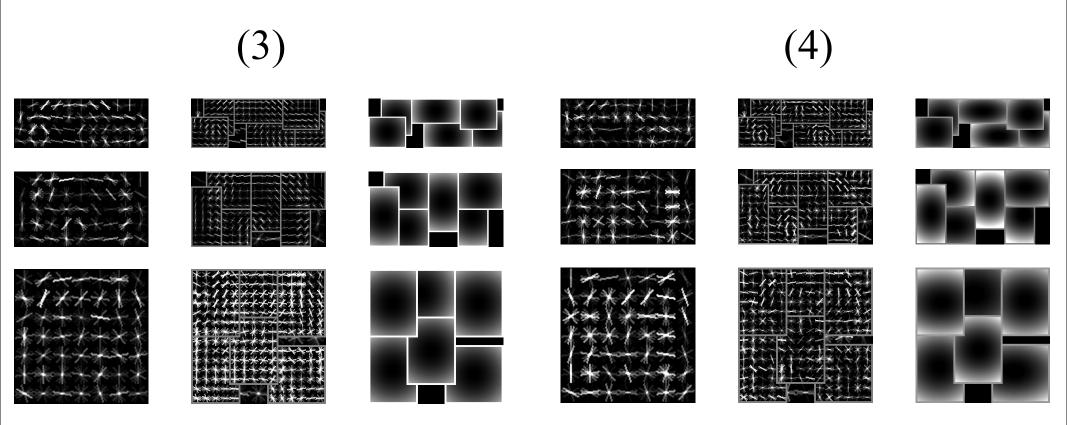
- (1) Train 3 self-symmetric root filters
 - Split positive examples using bbox aspect ratio
- (2) Split each root into pair of symmetric filters
 - Duplicate filters, add noise, retrain with latent component labels



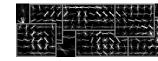
Training 6 component models

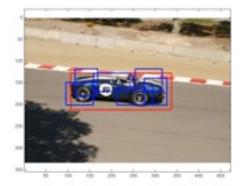
(3) Initialize parts

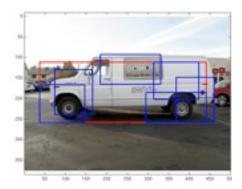
- Pick high energy regions in root, interpolate filter
- (4) Retrain parameters using model from (3)

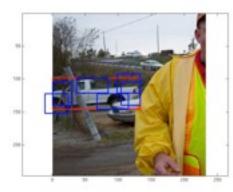


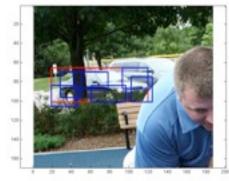
Car detections

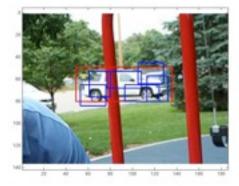


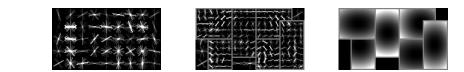


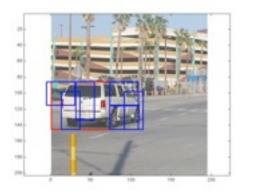


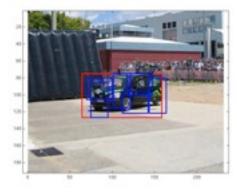


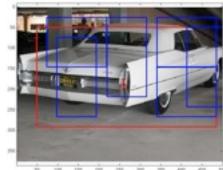




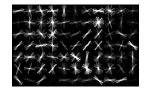


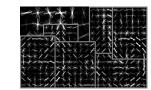


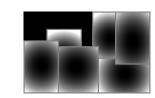


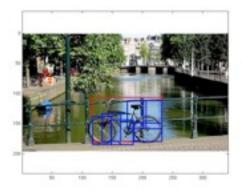


Bicycle detections

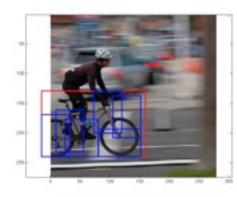


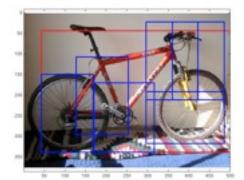


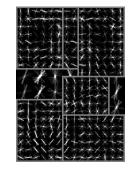


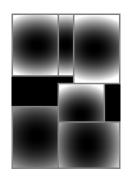


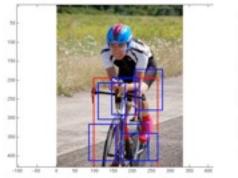


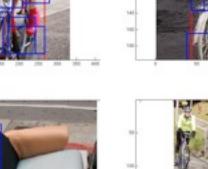




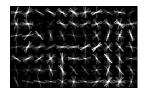


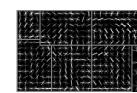


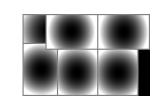


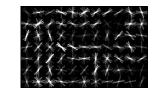


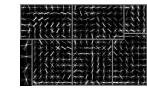
Horse detections

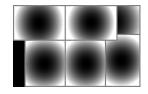


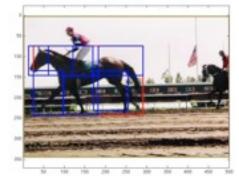


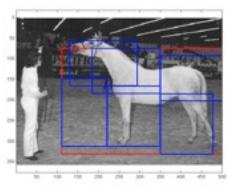


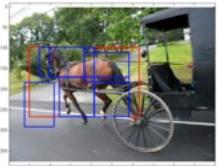




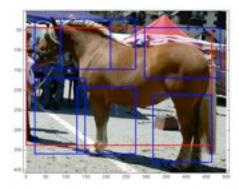


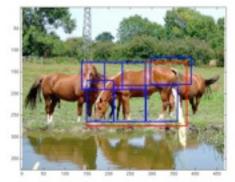


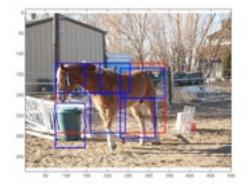


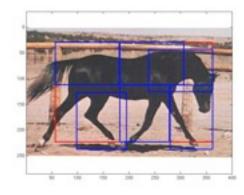


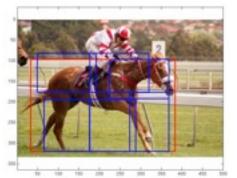
58 100 158 200 258 200 mit 400 458 50

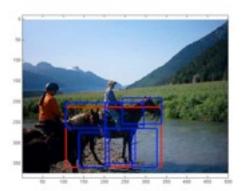


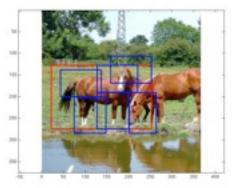


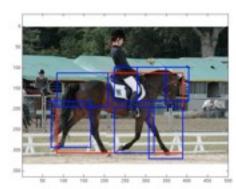












Summary

- Deformable models for object detection
 - Fast matching algorithms
 - Learning from weakly-labeled data
- Current and future work:
 - Visual grammars
 - AO* search (coarse-to-fine)
 - Non-linear models

