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Code for 2 component models is available online 
(new version will be available “soon”)

Paper describes general approach and results with 2 component models
For the 2009 competition we trained 6 component models

http://www.cs.uchicago.edu/~pff/latent
http://www.cs.uchicago.edu/~pff/latent


Overview of our models

• Mixture of deformable part models (pictorial structures)

• Each component has global template + deformable parts

- Templates model HOG features

• Fully trained from bounding boxes alone
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2 of 3 symmetric pairs shown



6 component person model
1 component from of each symmetric pair



6 component bicycle model
1 component from of each symmetric pair



Object hypothesis

Image pyramid HOG feature pyramid

Multiscale model captures features at two-resolutions

Score is sum of filter 
scores minus 

deformation costs

p0 : location of root
p1,..., pn : location of parts

z = (c, p0,..., pn)
c : component label



filters deformation parameters

displacements
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concatenation of HOG 
features and part 

displacement features

concatenation filters and 
deformation parameters

score(z) = β · Ψ(H, z)

Score of a hypothesis
(single component)

“data term” “spatial prior”



Matching

• Define an overall score for each root location

- Based on best placement of parts

• High scoring root locations define detections

- “sliding window approach”

• Efficient computation: dynamic programming + 
generalized distance transforms (max-convolution)

score(p0) = max
p1,...,pn

score(p0, . . . , pn).
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Post-processing detections

• NMS

- Remove multiple detections using overlap criteria

• Bounding box prediction

- Use part locations to predict object bounding box

• “Context rescoring”

- Rescore a detection based on its location within the image and 
maximum score of detections from each class



Training
• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training



Latent SVM (MI-SVM)

LD(β) =
1
2

||β||2 + C
n�

i=1

max(0, 1− yifβ(xi))

Minimize

D = (�x1, y1�, . . . , �xn, yn�)Training data yi ∈ {−1, 1}

We would like to find β such that: yifβ(xi) > 0

Classifiers that score an example x using

β are model parameters
z are latent values

fβ(x) = max
z∈Z(x)

β · Φ(x, z)



Latent SVM training

• Convex if we fix z for positive examples

• Optimization:

- Initialize β and iterate:

- Pick best z for each positive example

- Optimize β via gradient descent with data-mining

LD(β) =
1
2

||β||2 + C
n�

i=1

max(0, 1− yifβ(xi))

fβ(x) = max
z∈Z(x)

β · Φ(x, z)



Training 6 component models
(1) Train 3 self-symmetric root filters

- Split positive examples using bbox aspect ratio

(2) Split each root into pair of symmetric filters

- Duplicate filters, add noise, retrain with latent component labels

(1)

(2)



Training 6 component models
(3) Initialize parts

- Pick high energy regions in root, interpolate filter

(4) Retrain parameters using model from (3)

(3) (4)



Car detections



Bicycle detections



Horse detections



Summary

• Deformable models for object detection

- Fast matching algorithms

- Learning from weakly-labeled data

• Current and future work: 

- Visual grammars

- AO* search (coarse-to-fine)

- Non-linear models


