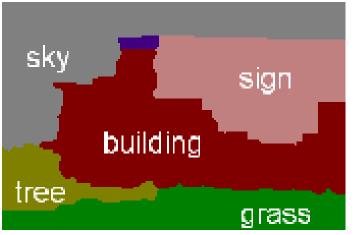
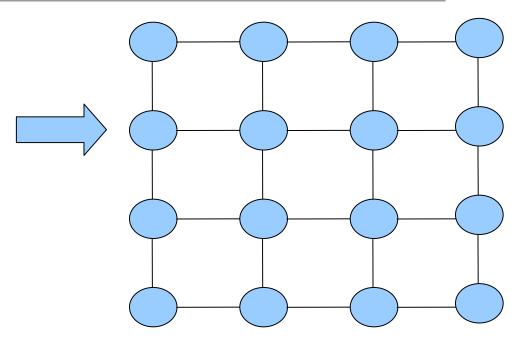
Associative Hierarchical CRFs for Object Class Image Segmentation

Ľubor Ladický¹ Chris Russell¹ Pushmeet Kohli² Philip H.S. Torr¹

Research


¹Oxford Brookes University


²Microsoft Research Cambridge

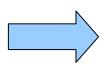
Pairwise CRF over Pixels

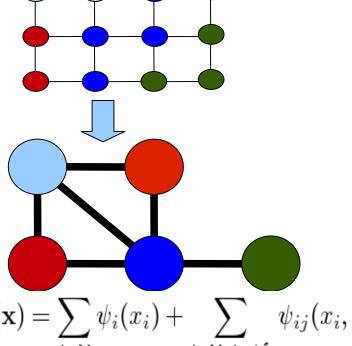
$$CRF$$

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \psi_i(x_i) + \sum_{i \in \mathcal{V}, j \in \mathcal{N}_i} \psi_{ij}(x_i, x_j).$$

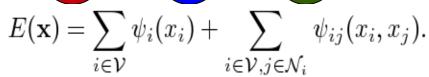
TextonBoost (Shotton ECCV06)

Pairwise CRF over Pixels



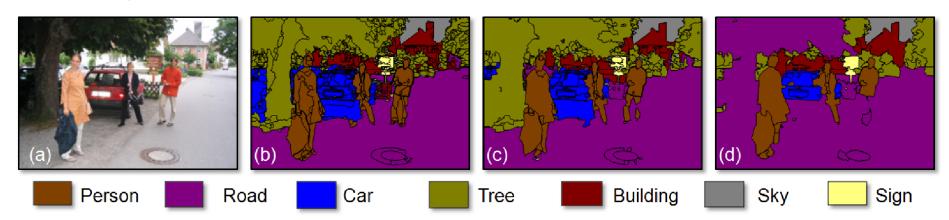

- No quantization errors
- Lacks long range interactions
- Results oversmoothed

Pairwise CRF over Segments



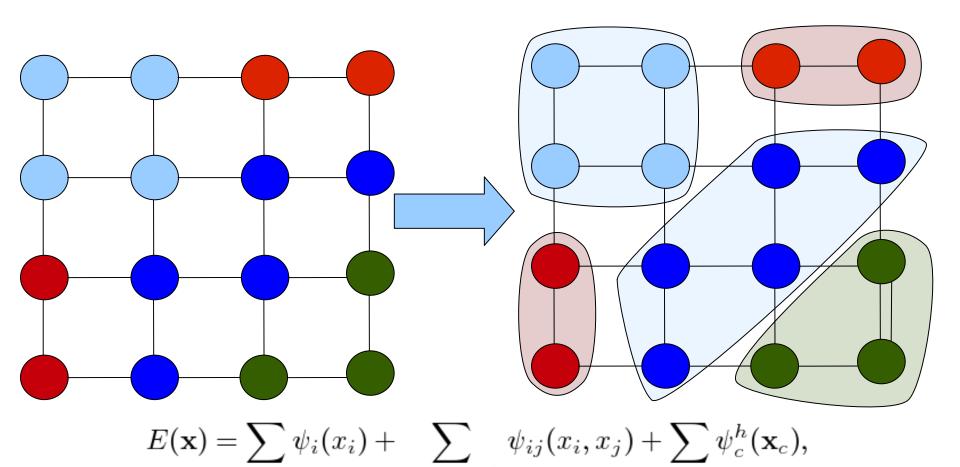
Shi, Malik PAMI2000, Comaniciu, Meer PAMI2002, Felzenschwalb, Huttenlocher, IJCV2004 Yang et al. CVPR07, Batra et al. CVPR08,

Pairwise CRF over Segments



- Allows long range interactions
- Better performance for VOC dataset
- Can not recover from incorrect segmentation
- Impossible to obtain perfect unsupervised segmentation

Pairwise CRF over Segments

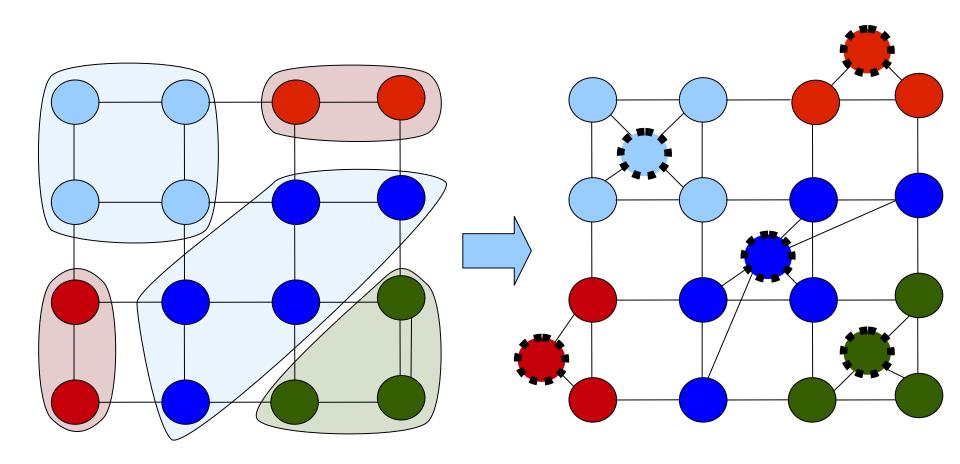


- Allows long range interactions
- Better performance for VOC dataset
- Can not recover from incorrect segmentation
- Impossible to obtain perfect unsupervised segmentation

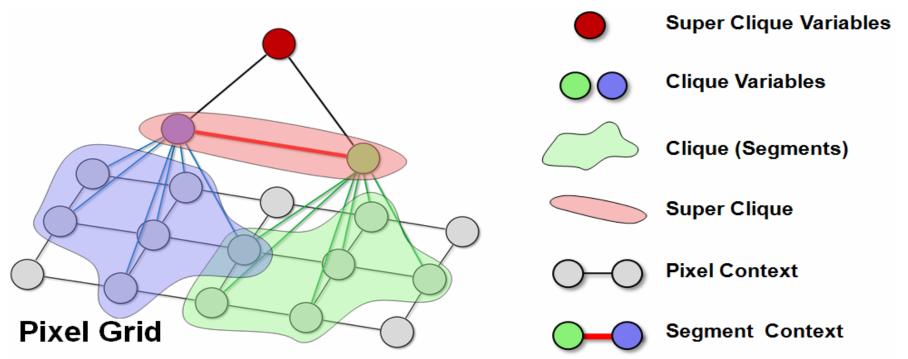
Robust P^N approach

 $i \in \mathcal{V}, j \in \mathcal{N}_l$

Kohli, Ladický, Torr CVPR08


Robust P^N approach

- Robust to misleading segmentations
- Segment consistency as a weak constraint
- Allows multiple segmentations
- Unary and pairwise potentials only at the pixel level


Robust P^N reformulation

Associative Hierarchical CRF

- Allows unary potentials for region variables
- Allows pairwise potentials for region variables
- Allows multiple layers and multi hierarchies

Analysis of the new model

Let's have one segmentation and potentials only over segment level

Analysis of the new model

Let's have one segmentation and potentials only over segment level

Interlayer connection is symmetric and semimetric

Minimum will be segment-consistent

Analysis of the new model

Let's have one segmentation and potentials only over segment level

Interlayer connection is symmetric and semimetric

- Minimum will be segment-consistent
- The cost of every segment consistent labelling is the same as the cost of the pairwise CRF labelling over segments
- Equivalent to pairwise CRF over segments

Associative Hierarchical CRF

- Merges information over multiple scales
- Allows multiple hierarchies
- Allows long range interactions
- Easy to train weights
- Interlayer connection limited(?) to associative relationship

Problem is NP-hard

- Problem is NP-hard
- Any message passing algorithm (TRW-S, BP, ..) or ICM can be applied to pairwise model

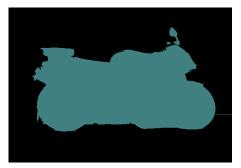
- Problem is NP-hard
- Any message passing algorithm (TRW-S, BP, ..) or ICM can be applied to pairwise model
- αβ-swap (potentials must be semi-metric)
 - Ishikawa construction over (α-F-β transition)

- Problem is NP-hard
- Any message passing algorithm (TRW-S, BP, ..) or ICM can be applied to pairwise model
- αβ-swap (potentials must be semi-metric)
 - Ishikawa construction over (α-F-β transition)
- α-expansion (potentials must be metric)
 - Reparametrization of interlayer connection to metric potential
 - Ishikawa construction over (α-F-old transition)
 - For more details read our technical report

Associative Hierarchical CRF

- Pixel layer
 - TextonBoost-like unary potential with multiple features (texton, SIFT, Opponent SIFT)
 - Intensity dependent pairwise potential
- Superpixel layer
 - Consistency potential
 - EMD-distance of colour histograms pairwise potential
- Segment layer
 - Unary potential based on histograms of features (texton, SIFT, Opponent SIFT, Location)
- And one other layer...

Results



- Use our model
 - Inference code available soon!

- Use our model
 - Inference code available soon!
- Use your favourite potentials

- Use our model
 - Inference code available soon!
- Use your favourite potentials
- Use your friend's favourite potentials

- Use our model
 - Inference code available soon!
- Use your favourite potentials
- Use your friend's favourite potentials
- Use your friend's friend's favourite potentials

- Use our model
 - Inference code available soon!
- Use your favourite potentials
- Use your friend's favourite potentials
- Use your friend's friend's favourite potentials
- Vision solved

- Use our model
 - Inference code available soon!
- Use your favourite potentials
- Use your friend's favourite potentials
- Use your friend's friend's favourite potentials
- Vision solved (..almost)

Thank you

Questions?