Multiple Kernels for Object Detection

Andrea Vedaldi Varun Gulshan Manik Varma Andrew Zisserman

MK classification

MK *detection*: challenges

• Goal: sliding window MK classifier

Time required: $T_{MK} \times # windows$

- Inference space is huge #windows = 100 millions
- $T_{\rm MK}$ = seconds

Excruciatingly slow (days/image)

Viola-Jones style

ICCV'09 Vedaldi Gulshan Varma Zisserman

Non-linear sliding SVM

Quasi-linear SVM

Quasi-linear (or additive) kernel decompose as:

$$K(x,y) = \sum_{j=1}^{a} k(x_j, y_j)$$

Thus SVM score rewrites:

Pre-compute look-up table.

Fast linear SVM

Histogram normalization

- Invariance to #features (region area)
- Kernel as similarity

region area

- An image region should be most similar to itself
- $\forall h, h' : K(h, h) \ge K(h, h')$
 - \bigcirc l^2 norm for linear kernel
 - I^1 norm for intersection, χ^2 , Hellinger kernels

SVMs overview

• First stage

- linear SVM
- (or jumping window)
- time: #windows

Second stage

- quasi-linear SVM
- χ² kernel
- time: #windows × #dimensions

• Third stage

- non-linear SVM
- χ²-RBF kernel
- time:

#windows × #dimensions × #SVs

DAIM 603

Single kernel vs multiple kernels

• Multiple Kernels \Rightarrow substantial boost

Quasi-linear *vs* non-linear kernels

Quasi-linear VS non-linear SVM (VOC 2008)

Non-linear

Quasi-linear

2007 vs 2008 vs 2009

VOC 2008

VOC 2009

VOC 2007

Results on different editions

VOC 2009 results

UoCTTI_LSVM-MDPM

Other Best 2009

OXFORD_MKL

Results on 2009 edition

Conclusions

- Hierarchy of kernel "structures"
 - trade-off speed and power with the same data/algorithm
- Histogram normalization
 - affects the results
 - should be selected based on the kernel
 - consistency criterion
- MK
 - Iarge boost from feature combination
 - sparse feature selection from MK learning
- MK classification code available <u>http://www.robots.ox.ac.uk/~vgg/software/MKL/</u>
- MK detection code will be available soon

Thank You!

bicycle

COW

car

