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MK classification
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Visual Words

PHOG

SSIM

PHOW Color
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MK SVM

combine one kernel per histogram

[Varma Rai 2007]
[Gehler Nowozin 2009]
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MK detection: challenges
• Goal: sliding window MK classifier

■ Inference space is huge
#windows = 100 millions

■ TMK = seconds
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Candidate region

Image

Feature vector

MK SVM

Excruciatingly slow (days/image)

Time required:
TMK × #windows

TMK



Cascade
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Feature vector

Viola-Jones style



Cascade
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Feature vector

Fast Linear SVM

Quasi-linear SVM

Non-linear SVM

Feature vector

• all full MK SVMs
• all look at all features
• trade-off speed and power 

tradeoff by choosing the 
kernel structure

Viola-Jones style

See also [Harzallah et al. 09]

ICCV’09
Vedaldi Gulshan Varma Zisserman
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Non-linear sliding SVM
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Feature Vector

i-th Support Vector

Candidate region

Image

Support Vectors (SVs)

Training DataTime required:
#dimensions × #windows × #SVs
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Quasi-linear  SVM
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Feature Vector

i-th Support Vector

Time required:
#dimensions × #windows × #SVs

Candidate region

Image
Quasi-linear (or additive) kernel
decompose as:

Thus SVM score rewrites:

#dimensions × #windows

Pre-compute look-up table.

[Maji Berg Malik 2008]
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Non-linear SVM



Fast linear SVM
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Feature vector

Candidate region
Linear SVM score

Image

Score map

Pre-compute 
scores

for each pixel.

Compute sum with
integral images

Feature vector
Image

Pixel

Time required:
#dimensions × #windows × #SVs

#windows
Additional speedup possible with branch and bound 
[Lampert Blaschko  Hofmann 2008]



• Invariance to #features (region area)

• Kernel as similarity
■ An image region should be most similar to itself
■  

- l2 norm for linear kernel
- l1 norm for intersection, χ2, Hellinger kernels

Histogram normalization
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Figure 2. Normalization and bias. We trained a linear SVM to
discriminate image regions R that do and do not portray a car (for
VOC 07 training and testing). We compare using un-normalized,
l1-normalized, and l2-normalized histograms. The first three pan-
els are scatter plots of the SVM score C(hR) (for some positive
and negative test regions) and the square root of the region area.
The un-normalized scores reward large regions, the l1-normalized
scores small regions, and the l2-normalized scores are essentially
unbiased. The last panel shows the ROC curve for the three clas-
sifiers, illustrating that l2 normalization performs best.

we have K(h, h) = �h�2
2 and the condition is satisfied if the

histograms are l2 normalized; for the other kernels consid-
ered here it can be shown that the condition is satisfied if
histograms are l1 normalized.

While extremely efficient to evaluate, the linear SVMs
with l1-normalized or un-normalized histograms fail to
meet this condition. The questions is, does this adversely
affect the classification?

Consider first l1-normalized histograms. The discrim-
inant score can be calculated and bounded as C(hR) =�

b
wbhR

b
≤ (maxb wb)

�
b
hR

b
= maxb wb where we

used the fact that, by hypothesis, �hR�1 =
�

b
hR

b
= 1. In

particular, the upper bound is attained if the mass of hR is
concentrated on the bin b with the largest weight wb. This
happens, for instance, if R is a small region that encloses
just a single occurrence of a feature of that label.

Consider now using un-normalized histograms HR and
a linear kernel as in [13]. In this case, the SVM score is
given by C(HR) = �w, HR� = �HR�1�w, H

R

�HR�1
�. The

mass (number of feature occurrences) �HR�1 has a linear
dependence on the region area. In particular, any positively
scored region R can attain an arbitrarily large score if it is
large enough.

Fig. 2 illustrates such considerations empirically. Un-
fortunately, we are not aware of any method that could be
used to evaluate the l2-normalized SVM in O(N) opera-
tions. Thus the fast linear SVM should be considered a

weak classifier suitable for the fist cascade stage only.

4. Features and implementation details

4.1. Appearance descriptors

To construct descriptors of the appearance of the candi-
date regions R we use a number of different feature chan-
nels. These are the features used in [4, 13, 21, 22, 25], and
we use public domain source code.

Bag of words (SIFT). We extract visual words at Hessian-
Laplace [18] points and compute rotation-variant SIFT de-
scriptors [15]. Those are are quantized in a vocabulary of
3000 words, trained on features from the bounding boxes of
several object instances. For each class, we discriminatively
compress the vocabulary down to 64 visual words as in [11]
(yielding 20 different vocabularies).

Dense words (PhowGray, PhowColor). We compute ro-
tationally invariant SIFT descriptors on a regular grid each
five pixels, at four multiple scales (10, 15, 20, 25 pixel
radii). Descriptors corresponding to low contrast areas are
zeroed. Descriptors are then quantized in 300 visual words.
The color versions stacks SIFT descriptors for each HSV
color channels.

Histogram of oriented edges (Phog180, Phog360). We
use MATLAB Canny detector to compute an edge map E.
For each pixel p corresponding to an edge, we then assign
and orientation and a weight, based on the orientation and
magnitude of the underlying image gradient ∇I(p). The
angle is then quantized in eight bins with soft linear assign-
ment.

Self-similarity features (SSIM). We compute self-
similarity descriptors [20] on a regular grid each five pixels.
Each descriptor is obtained by computing the correlation
map of a 5× 5 pixels patch in a window of radius 40 pixels,
then quantizing it in 3 radial bins and 10 angular bins, ob-
taining 30 dimensional descriptor vectors. The descriptors
are then quantized into 300 visual words.

Spatial pyramid. To describe the appearance of a candi-
date region R, we compute a three-level pyramid of spatial
histograms hR

f0, hR

f1, hR

f2, similar to [6, 14].

4.2. Learning the object classifier

Each SVM classifier C(hR) is trained to discriminate be-
tween candidate regions R that do and do not contain an
instance of the object of interest, i.e. a one-vs-the-rest clas-
sifier.

Training (performed using the MKL algorithm
from [21]) requires providing a number of positive
and negative data samples. As positive samples, we use the
ground truth object instances for a class, plus a number of
jittered instances (obtained by flipping the training images).

Scatter plot:
linear SVM score vs region area

•Linear SVM works better with l2 
normalization

•Fast linear SVM requires
no or l1 normalization
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SVMs overview
• First stage

■ linear SVM
■ (or jumping window)
■ time: #windows

• Second stage

■ quasi-linear SVM
■ χ2 kernel
■ time: #windows × #dimensions

• Third stage

■ non-linear SVM
■ χ2-RBF kernel
■ time: 

#windows × #dimensions × #SVs
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Feature vector

Fast Linear SVM

Quasi-linear SVM

Jumping Window

Non-linear SVM
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Single kernel vs multiple kernels
• Multiple Kernels ⇒ substantial boost

• Multiple Kernel Learning ⇒
■ marginal boost over averaging
■ sparse feature selection

• Consistent with
[Gehler Nowozin 09]

aerop. bicyc. bird boat bottle bus car cat chair cow dinin. dog horse motor. person potte. sheep sofa train tvmon.

s2 37.6 47.8 15.3 15.3 21.9 50.7 50.6 30.0 17.3 33.0 22.5 21.5 51.2 45.5 23.3 12.4 23.9 28.5 45.3 48.5

s1 36.6 42.5 12.8 14.5 15.1 46.4 45.9 25.5 14.4 30.4 19.0 16.0 49.0 46.0 21.5 11.0 24.5 26.4 42.6 40.8

dt 18.0 41.1 9.2 9.8 24.9 34.9 39.6 11.0 15.5 16.5 11.0 6.2 30.1 33.7 26.7 14.0 14.1 15.6 20.6 33.6

v7 26.2 40.9 9.8 9.4 21.4 39.3 43.2 24.0 12.8 14.0 9.8 16.2 33.5 37.5 22.1 12.0 17.5 14.7 33.4 28.9
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 MKL 50.4%

avg 49.9%

ssim 39.1%

phog180 39.8%

phog360 40.9%

phowColor 42.6%

phowGray 44.4%

Figure 3. Training and testing on VOC 2007. The table reports the average precision obtained by our method in each of the 20 PASCAL

2007 challenge categories. The method has been trained and tested on the 2007 data. (st2) refers to stage 2 of the pipeline (non-linear

SVM) and (st1) to stage 1 (quasi-linear SVM). For comparison, (dt) reports the results from [10] and (v7) the best result for each category

among all methods submitted to the VOC 2007 challenge (see [9] for the breakdown). Our method outperforms the others in all but three

categories. With few exceptions, the non-linear SVM (s2) outperforms the quasi-linear SVM (s1). Below we report the precision-recall

curves obtained for the two well performing classes and one difficult one. Last panel. We compare for car the following discriminative

models: MKL, avg (average of all channels), ssim (self-similarity), phog180, phog360, phowColor, phowGray. Combining features yields

a large improvement; averaging is close to MKL, but the latter yields a sparse selection of channels.

aerop. bicyc. bird boat bottle bus car cat chair cow dinin. dog horse motor. person potte. sheep sofa train tvmon.

s2 41.2 37.1 16.4 19.9 21.7 31.4 35.9 26.5 12.5 15.4 12.3 17.9 37.6 43.7 25.0 7.9 19.4 17.4 36.5 41.2

s1 40.6 34.1 13.6 13.7 17.4 28.6 33.3 21.4 12.1 15.1 15.1 15.0 37.9 39.5 24.0 10.2 18.6 15.1 35.4 39.3

v8 36.5 42.0 11.3 11.4 28.2 23.8 36.6 21.3 14.6 17.7 15.1 14.9 36.1 40.3 42.0 12.6 19.4 17.3 29.6 37.1

Figure 4. Training and testing on VOC 2008. (s2) non-linear classifier (s1) quasi-linear classifier (v8) best result for each category among

all methods submitted to the VOC 2008 challenge (see [9] for the breakdown).

aerop. bicyc. bird boat bottle bus car cat chair cow dinin. dog horse motor. person potte. sheep sofa train tvmon.

s2 38.3 41.3 15.5 14.6 17.6 45.4 49.8 25.6 15.2 23.6 7.7 18.4 40.7 43.8 21.3 10.6 19.4 18.6 42.3 45.1

s1 37.2 38.5 12.9 6.0 14.9 43.8 45.5 17.9 12.9 21.4 10.6 16.4 37.1 40.8 20.5 6.2 19.3 16.1 38.6 40.6

v8 28.5 39.0 10.7 11.2 20.2 41.0 48.4 15.2 16.1 25.7 10.1 11.5 34.9 39.7 16.8 10.3 21.8 22.8 37.0 36.3

Figure 5. Training on VOC 2008 and testing on VOC 2007. (s2) non-linear classifier (s1) quasi-linear classifier (v8) best result for each

category among all methods submitted to the VOC 2008 challenge (see [9] for the breakdown).

As negative samples, we use regions that do not overlap the

target object instances by more than 20%.

Even so, the number of possible negative regions is pro-

hibitively large. Clearly, we must identify only a subset of

representative cases. We do so by retraining each classi-

fier, as follows. The classifier is used to extract candidate

regions from a number of training images. The candidates

are then compared to the ground truth, and are labeled as

errors if they overlap the target class by less than 20%. Fi-

nally, from each image we extract up to three highly scored

errors, avoiding any overlap of more than 50%. Such errors

are then added to the SVM training data, and the SVM is

trained again. Notice also that we never include new posi-

tive data in retraining, as we are using all the positive object

instances already.

Since extracting candidates is a relatively slow operation,

retraining is operated on rotating subset of training images.

Experimentally, we verified that it is beneficial to retrain

twice on each subset, and we do at most four rounds of re-

training for each stage (hence each stage is trained at most

on two of the rotating subsets). We also make sure that

each rotating subset contains in roughly equal proportions

the target object (e.g. car), other easily confused objects

(e.g. bus), and other objects as well.

Post-processing. The output of the last stage is a ranked

list of 100 candidate regions per image. Many of these re-

gions correspond to duplicate detections, which we remove

in post processing, by non-maxima suppression. This is im-

plemented as follows: We select the highly ranked candi-

date, we remove all order candidates with an overlap greater

than 20% and we repeat. Finally, we produce a list of the

top ten pruned candidates (as images typically do not con-



Quasi-linear vs non-linear kernels
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2007 vs 2008 vs 2009
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VOC 2009 results
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Conclusions
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• Hierarchy of kernel “structures”

■ trade-off speed and power with the same data/algorithm

• Histogram normalization

■ affects the results
■ should be selected based on the kernel
- consistency criterion

• MK

■ large boost from feature combination
■ sparse feature selection from MK learning

• MK classification code available
http://www.robots.ox.ac.uk/~vgg/software/MKL/

• MK detection code will be available soon

http://www.robots.ox.ac.uk/~vgg/software/MKL/
http://www.robots.ox.ac.uk/~vgg/software/MKL/
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