# Image Classification Using Gaussian Mixture and Local Coordinate Coding

#### Kai Yu NEC Laboratories America, Cupertino, California, USA

#### **Contributors:**

Jinjun Wang, Fengjun Lv, Wei Xu, Yihong Gong Xi Zhou, Jianchao Yang, Thomas Huang, Tong Zhang Chen Wu NEC Laboratories America
Univ. of Illinois at Urbana-Champaign
Rutgers University
Stanford University

# Where We Are in This Competition

|             | Our 4  | submiss   | ions | Our<br>Best | Other's<br>Best | Our<br>Improvement |
|-------------|--------|-----------|------|-------------|-----------------|--------------------|
| Aeroplane   | 88.1 8 | 88.0 87.1 | 87.7 | 88.1        | 86.6            | 1.5                |
| Bicycle     | 68.0   | 68.6 67.4 | 67.8 | 68.6        | 63.9            | 4.7                |
| Bird        | 68.0   | 67.9 65.8 | 68.1 | 68.1        | 66.7            | 1.4                |
| Boat        | 72.5 7 | 72.9 72.3 | 71.1 | 72.9        | 67.3            | 5.6                |
| Bottle      | 41.0 4 | 44.2 40.9 | 39.1 | 44.2        | 43.7            | 0.5                |
| Bus         | 78.9 7 | 79.5 78.3 | 78.5 | 79.5        | 74.1            | 5.4                |
| Car         | 70.4 7 | 72.5 69.7 | 70.6 | 72.5        | 64.7            | 7.8                |
| Cat         | 70.4 7 | 70.8 69.7 | 70.7 | 70.8        | 64.2            | 6.6                |
| Chair       | 58.1 5 | 59.5 58.5 | 57.4 | 59.5        | 57.4            | 2.1                |
| Cow         | 53.4 5 | 53.6 50.1 | 51.7 | 53.6        | 46.2            | 7.4                |
| Diningtable | 55.7 5 | 57.5 55.1 | 53.3 | 57.5        | 54.7            | 2.8                |
| Dog         | 59.3 5 | 59.0 56.3 | 59.2 | 59.3        | 53.5            | 5.8                |
| Horse       | 73.1 7 | 72.6 71.8 | 71.6 | 73.1        | 68.1            | 5.0                |
| Motorbike   | 71.3 7 | 72.3 70.8 | 70.6 | 72.3        | 70.6            | 1.7                |
| Person      | 84.5 8 | 35.3 84.1 | 84.0 | 85.3        | 85.2            | 0.1                |
| Pottedplant | 32.3   | 36.6 31.4 | 30.9 | 36.6        | 39.1            | -2.5               |
| Sheep       | 53.3 5 | 56.9 51.5 | 51.7 | 56.9        | 48.2            | 8.7                |
| Sofa        | 56.7 5 | 57.9 55.1 | 55.9 | 57.9        | 50.0            | 7.9                |
| Train       | 86.0   | 35.9 84.7 | 85.9 | 86.0        | 83.4            | 2.6                |
| Tvmonitor   | 66.8   | 68.0 65.2 | 66.7 | 68.0        | 68.6            | -0.6               |
| Average     | 65.4 6 | 66.5 64.3 | 64.6 |             |                 |                    |

# **Comparative Overview**

| Paradigm                 | State of the Art      | Ours               |  |
|--------------------------|-----------------------|--------------------|--|
| <b>Feature Detection</b> | multiple detectors    | dense sampling     |  |
| Feature Extraction       | multiple descriptors  | SIFT (gray)        |  |
| Coding Scheme            | VQ                    | GMM, LCC           |  |
| <b>Spatial Pooling</b>   | SPM                   | SPM                |  |
| Classifier               | nonlinear classifiers | linear classifiers |  |

**Our Strategy** 

Minimum feature engineering

| Paradigm                 | State of the Art      | Ours               |
|--------------------------|-----------------------|--------------------|
| <b>Feature Detection</b> | multiple detectors    | dense sampling     |
| Feature Extraction       | multiple descriptors  | SIFT (gray)        |
| Coding Scheme            | VQ                    | GMM, LCC           |
| <b>Spatial Pooling</b>   | SPM                   | SPM                |
| Classifier               | nonlinear classifiers | linear classifiers |

We bet on machine learning techniques.

#### **Pipeline Overview - I**

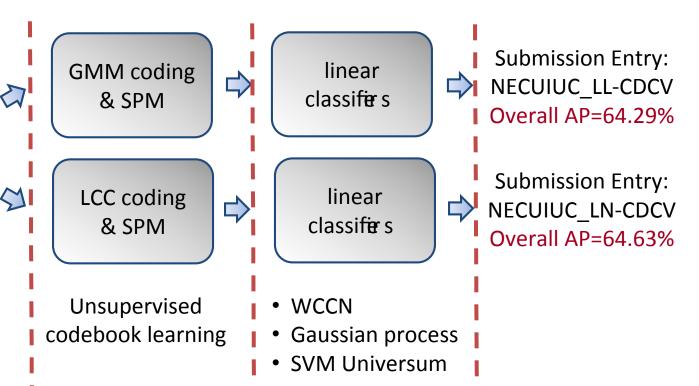
#### Input gray image



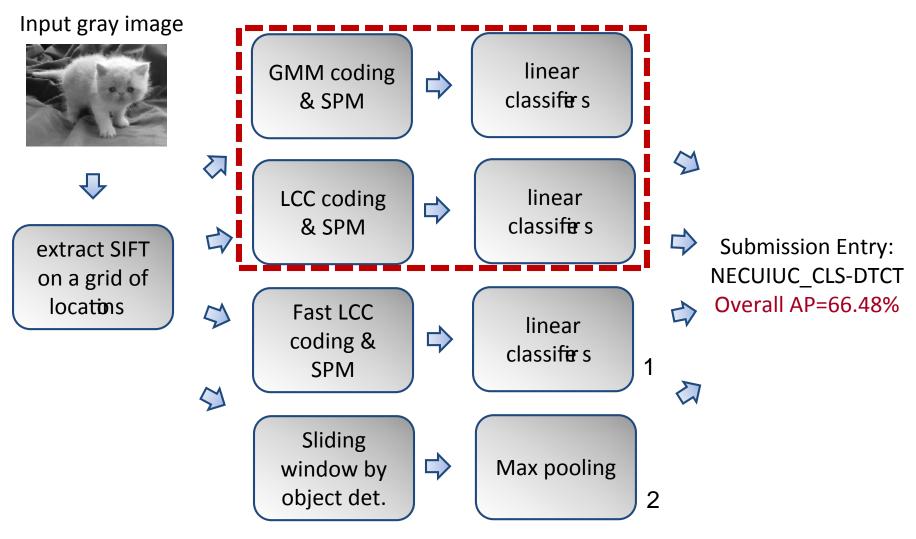


extract SIFT on a grid of locations

- Grid Step Size: every 4 pixels
- Patch Size:16x16, 24x24, 32x32
- PCA on SIFT:
   128 dim -> 80 dim



### Pipeline Overview - II



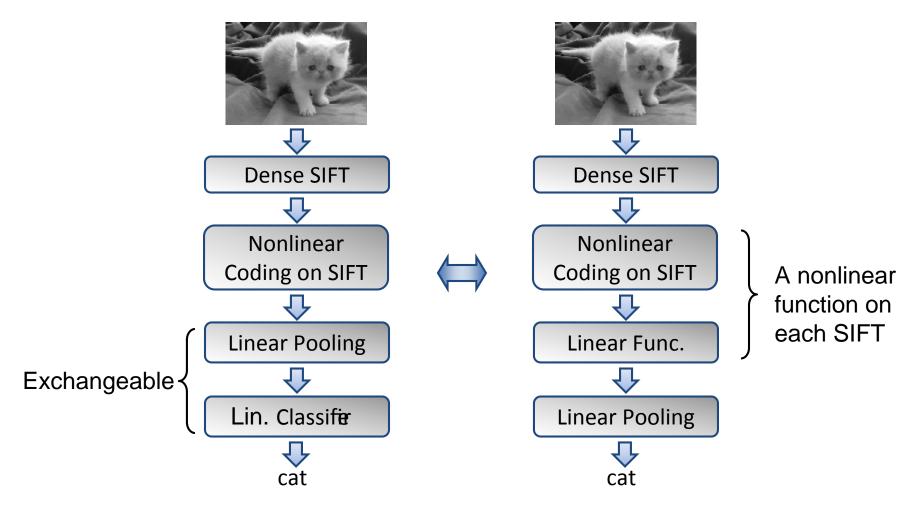
Note: 1. Overall AP is around 58.0%; 2. Overall AP is around 46% (estimation based on 5-fold cross validation)

#### **Prior Publications**

- Local Coordinate Coding
  - Linear Spatial Pyramid Matching Using Sparse Coding for Image Classification Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang, CVPR 2009
  - Nonlinear Learning using Local Coordinate Coding
     Kai Yu, Tong Zhang, and Yihong Gong, NIPS 2009, to appear
- GMM
  - Hierarchical Gaussianization for Image Classification
     Xi Zhou, Na Cui, Zhen Li, Feng Liang, and Thomas S. Huang, ICCV 2009
  - SIFT-Bag Kernel for Video Event Analysis
     Xi Zhou, Xiaodan Zhuang, Shuicheng Yan, Shih-Fu Chang, Mark Hasegawa-Johnson,
     Thomas S. Huang, ACM Multimedia 2008

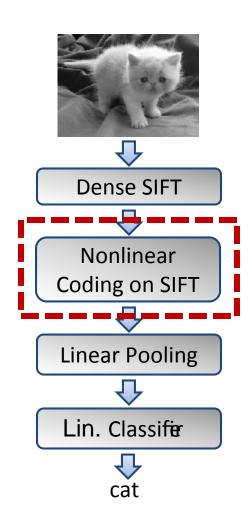
In our work on PASCAL challenge, we made further extensions of the above work in both engineering and theory.

#### A Unified Framework



- What matters is to learn nonlinear function on SIFT vectors.
- This boils down to learning a good coding scheme of SIFT.

# **Coding of SIFT**



#### **Some Notation**

$$X \in \mathbb{R}^D$$

$$\Phi(X): \mathbb{R}^D \to \mathbb{R}^L$$

$$f(X): \mathbb{R}^D \longrightarrow \mathbb{R}$$

$$\hat{f}(X) = W^{\top} \Phi(X)$$

a SIFT feature vector

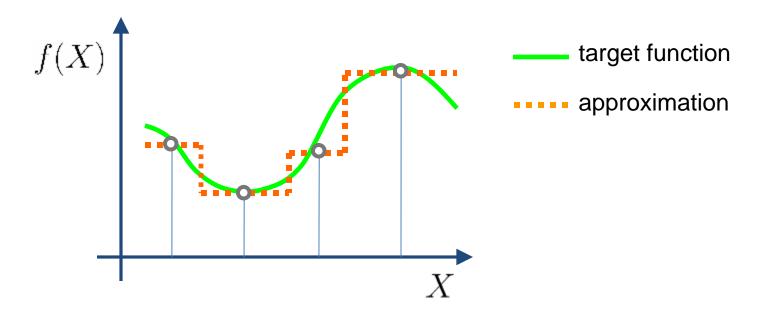
encoding function

unknown function on local features

approximating function

Supervised Learning Unsupervised Learning

# **Example 1: Vector Quantization Coding (VQ)**



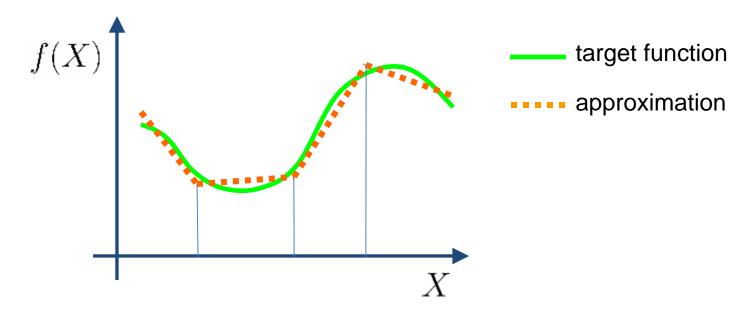
■ The approximating function is

$$\hat{f}(X) = W^{\top} \Phi(X),$$

where  $W = [W_1, W_2, \dots, W_K] \top$ ,  $\Phi(X)$  is the code of X.

■ If X belongs to class 2,  $\Phi(X) = [0, 1, 0, \dots, 0]^{\top}$ , then  $\hat{f}(X) = W^{\top}\Phi(X) = W_2$ .

# **Example 2: "Supervector" Coding**



■ Given K clusters in X space, let  $W = [W_1^\top, W_2^\top, \dots, W_K^\top]^\top$ , where  $W_k \in \mathbb{R}^D$ , and

$$\Phi(X) = [C_1(X) * X^{\top}, C_2(X) * X^{\top}, \dots, C_K(X) * X^{\top}]^{\top},$$

with  $C_k(X) = 1$  if X belongs to cluster k, otherwise  $C_k(X) = 0$ .

- Then  $\hat{f}(X) = W^{\top}\Phi(X) = \sum_k C_k(X) * W_k^{\top}X$ . a locally piecewise linear function
- $C_k(X)$  can be soft probability given by GMM, then  $\Phi(X)$  is GMM supervector.

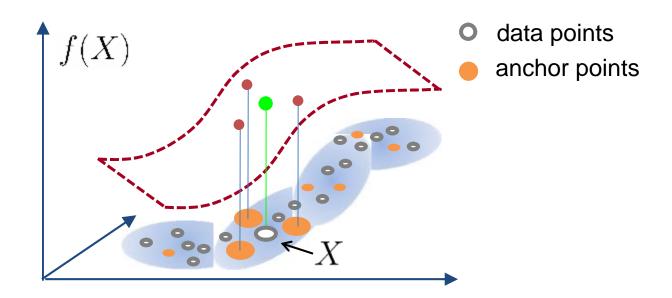
# **Example 3: Local Coordinate Coding**



- Given anchor points  $[B_1, ..., B_K]$ , if the coding scheme  $\Phi(X) = [\phi_1, ..., \phi_K]$  satisfies
  - 1. low reconstruction error:  $X \approx \sum_{k=1}^{K} \phi_k B_k$ ;
  - 2. **good locality**:  $\phi_k$  tends to be nonzero if  $B_k$  is in X's neighborhood, otherwise 0.
- Then  $\hat{f}(X) = W^{\top}\Phi(X)$  provides a close approximation to f(X).

#### **LCC: How It Works**

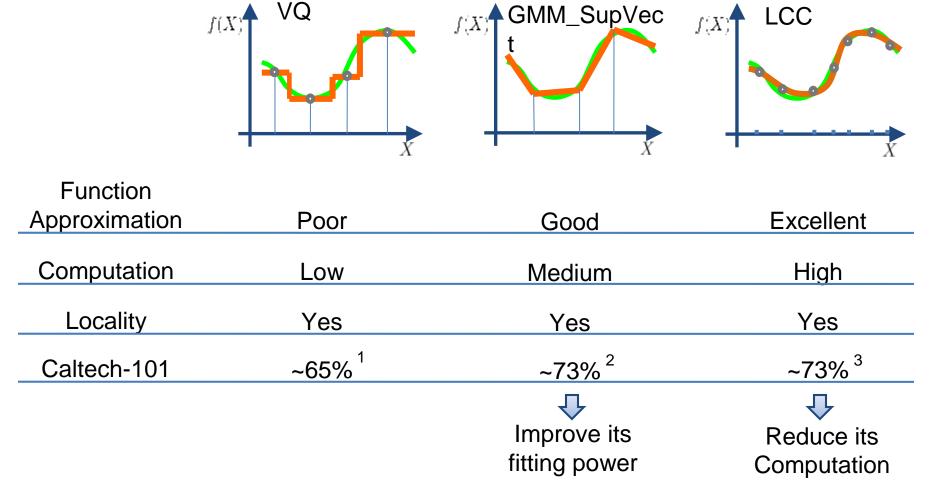
$$\hat{f}(X) = \sum_{k=1}^K \Phi_k W_k = \sum_{k=1}^K \Phi_k \hat{f}(B_k)$$
 forms a local interpolation



$$\Phi(X) = \arg\max_{\Phi} \left\| X - \sum_{k=1}^{K} \Phi_k B_k \right\|^2 + \lambda \sum_{k} \alpha_k(X) |\Phi_k|$$

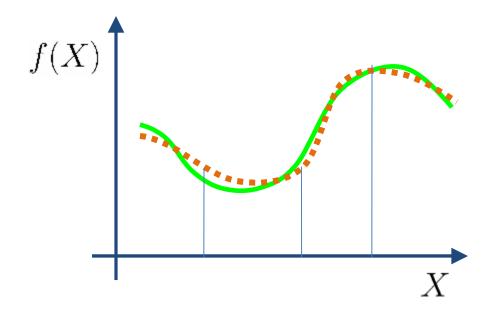
where  $\alpha_k(X)$  is a distance from X to  $B_k$ 

#### **Comparison of Coding Methods**



- 1. Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce, CVPR, 2006
- 2. Xi Zhou, Na Cui, Zhen Li, Feng Liang, and Thomas S. Huang, ICCV, 2009
- 3. Jianchao Yang, Kai Yu, Yihong Gong, and Thomas S. Huang, CVPR, 2009

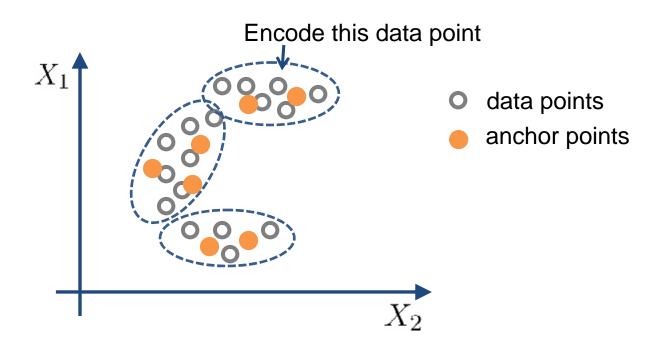
# **Improve GMM Supervector Coding**



- "local linear" → "local nonlinear"
- the code of *X* is

$$\Phi(X) = \left[ C_1(X) * (X, X^2)^\top, \dots, C_K(X) * (X, X^2)^\top \right]$$

### Improve LCC's Efficiency



- Pre-computation: partition data and anchor points
- Eliminate those anchor points in different partitions

### **Equivalent to "Mixture of Coding Experts"**

- Use a **soft-max gating function**  $G_k(X)$  indicating if X is in local partition k.
- Optimize the following cost

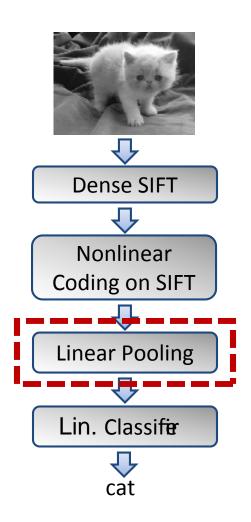
$$\Phi(X) = \arg\min_{\Phi} \sum_{k=1}^{K} G_k(X) \left( \left\| X - \sum_{m=1}^{M} \Phi_m^{(k)} B_m^{(k)} \right\|^2 + \lambda \sum_{m} \left| \Phi_m^{(k)} \right| \right)$$

- This is equivalent to

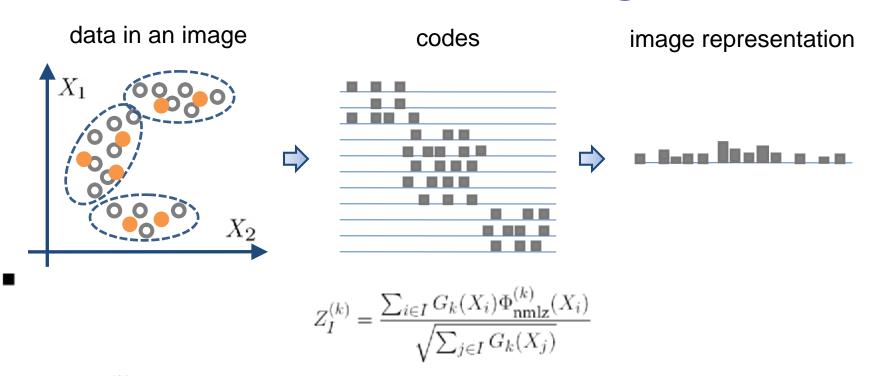
$$\Phi(X) = \arg\max_{\Phi} \left\| X - \sum_{k=1}^{M*K} \Phi_k B_k \right\|^2 + \lambda \sum_{k=1}^{M*K} \alpha_k(X) |\Phi_k|$$

where  $\alpha_k(X)$  is 1 if X and  $B_k$  belong to the same partition, overwise  $+\infty$ .

# **Linear Pooling**



### (Local) Linear Pooling



where  $\Phi_{\text{nmlz}}^{(k)}(X)$  is the normalized version of  $\Phi^{(k)}(X)$ , obtained by subtracting mean and then dividing by variance.

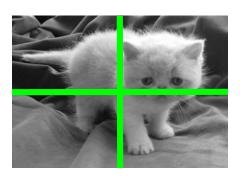
 $\blacksquare$  The classification function on image I is

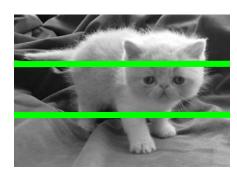
Nonlinear function on local features

$$c(I) = \sum_{k=1}^{K} W^{(k)}^{\top} Z_{I}^{(k)} = \sum_{k=1}^{K} \frac{\sum_{i \in I} G_{k}(X_{i}) W^{(k)}^{\top} \Phi_{\text{nmlz}}^{(k)}(X_{i})}{\sqrt{\sum_{j \in I} G_{k}(X_{j})}} = \sum_{k=1}^{K} \frac{\sum_{i \in I} G_{k}(X_{i}) f^{(k)}(X_{i})}{\sqrt{\sum_{j \in I} G_{k}(X_{j})}}$$

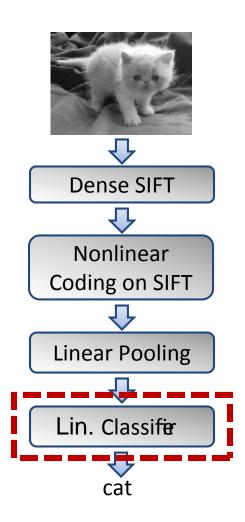
# **SPM** representation







#### **Linear Classifier**



#### **Support Vector Machines**

■ Use our own implementation, training using gradient based method LBFGS.

$$\min_{W} \left\{ J(W) = \|W\|^2 + C \sum_{i=1}^{n} \ell(W; Y_i, Z_i) \right\}$$

•

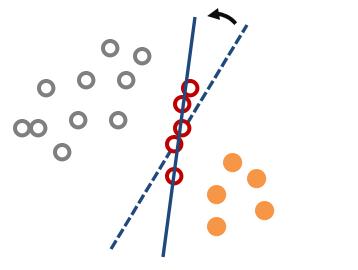
Use a differentiable hinge loss

$$\ell\left(W; Y_i, Z_i\right) = \left[\max\left(0, W^{\top} Z_i \cdot Y_i - 1\right)\right]^2$$

#### **Universum SVMs**

■ Use the Universum approach: if image i is a difficult case, let the loss be

$$\ell(W; Y_i, Z_i) = (W^{\top} Z_i)^2$$



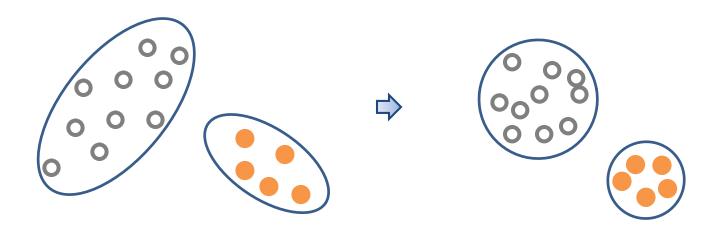
- Positive class
- Negative class

#### Within-class Covariance Normalization

■ Within-class normalization

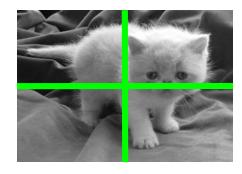
$$K_{i,j} = Z_i^{\top} (\gamma S + (1 - \gamma)I)^{-1} Z_j$$

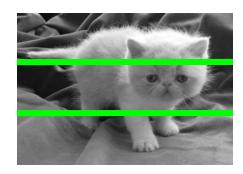
where S is the average within-class covariance matrix.



#### **Improve SPM using Gaussian Process**







- The SPM approach uses 8 linear kernels.
- We can learn the kernel weights.

$$\min_{\{\alpha_s \ge 0\}} -\log P\left(Y \middle| \sum_{s=1}^8 \alpha_s K_s\right) + \lambda \sum_{s=1}^8 (\alpha_s - \alpha_0)^2$$

We learn a set of global weights for all classes.

#### **Some Details**

Number of partitions or components

– GMM: 1024 and 2048

LCC: 1024 and 2048

- Dimensionality of feature vector for each image (e.g. in case of 1024 partitions)
  - GMM: 1024x80x8 (1024 components, 80 PCA-SIFT, 8 SPM sub kernels)
  - LCC: 1024x256x8 (1024 partitions, 256 codebook size, 8 SPM sub kernels)

#### **Conclusion Remarks**

- Highly nonlinear, highly local encoding of image local features make difference!
- Still a long way to go
  - No high-level (semantic) features used so far
  - how to get compact image representations?
  - Supervised training of coding schemes
  - Better methods to use the bounding box information
- More details will be provided in forthcoming TR and papers.