PASCAL VOC 2010

ECCV 2010/Crete/Greece

CASIA

Object Detection by Context and Boosted HOG-LBP

Yinan Yu, Junge Zhang, Yongzhen Huang, Shuai Zheng, Weiqiang Ren, Chong Wang

Advisors: Kaiqi Huang, Tieniu Tan

National Laboratory of Pattern Recognition Institute of Automation, CAS Beijing, P. R. China

Background

• Object Detection is a fundamental and crucial module in Intelligent

Visual Surveillance.

Anomaly Detection

Object Classification in Traffic Scenes

Object Detection

Intelligent Visual Surveillance System

Background

- Object Detection
 - Video surveillance, Human-Machine Interface, Multimedia analysis...
- Feature, Framework and Context
- The framework used in our method
 Deformable Part Model (UOCTTI)

Background

- Object Detection
 - Video surveillance, Human-Machine Interface, Multimedia analysis...
- Feature, Framework and Context
- The framework used in our method
 Deformable Part Model (UOCTTI)

Overview of our method

Overview of our method

Our team family

Boosted HOG-LBP

Distinctive Multi-Context

Boosted HOG-LBP I : Multi-Features

Used features

- Shape feature Enhanced HOG, based on UOCTTI (CVPR 2008)
- Texture feature Enhanced Uniform LBP, based on T. Oiala (PR 1998)

Shape information performs better than texture information for detection tasks, but they complement each other.

Boosted HOG-LBP II : Combination

How to combine them?

- Concatenation of HOG and LBP
- Concatenation of HOG and a subset of LBP

Boosted HOG-LBP II : Naïve Combination

Some experiments on VOC2007 Naïve combination

Category	HOG	Naïve combination	Improvement
Person	36.2%	37.2%	1.0%
Chair	16.5%	15.2%	-1.3%

- Not all LBP features improve the performance.
- See the chair class. It's believed that some LBP features damage the detection performance

Baseline is the UOCTTI version 3.1

Boosted HOG-LBP II : Boosted Combination

Gentle-Boost is used for feature selection A subset of LBP features are selected, and most noisy features are removed

Category	HOG(%)	HOG+BoostedLBP(%)	Improvement(%)
Person	36.2	40.2	4.0
Chair	16.5	17.9	1.4
Cat	16.3	20.0	3.7
Dog	5.0	14.5	9.5

- The most effective LBP features are selected to enhance object description
- Object with rich textures benefits more from the Boosted LBP feature

Multi-Context

- Spatial Context
- Global Context
- Inter-Class Context

Multi-Context : Spatial Context

For each detected bounding box (s, x1, x2, y1, y2) (x1/width, x2/width, y1/height, y2/height, dc/diagonal, SizeO/SizeI)

Multi-Context : Global Context

Global context:

Scores from classification

NLPR_VSTAR_CLS_DICTLEARN 4 No.1 positions in VOC 2010 Classification Challenge

• Maximum box scores (20 classes) (UOCTTL)

Multi-Context : Global Context

NLPR_VSTAR_CLS_DICTLEARN Dense SIFT descriptor: grid = 4, #scale = 5 Saliency Coding

Linear SVM

National Laboratory of Pattern Recognition Institute of Automation, CAS, Beijing, P. R. China

🗶 📓 😹 🖥 🔛 🎬

Saliency Coding is proposed to find more salient weights

Our saliency definition is : The closest distance << the second closest one

Our solution : 1-d1/d2 (the ratio between nearest distance and second nearest distance)

Dictionary Learning

Proximately solve derivative relation between AP and dictionaries

Code Relation Modeling

Codes are not independent but restricted one another

The inter-class context characterizes a weak spatial relationship between different classes objects

I. Classifiers of separate HOG and LBP are learned for each class (without parts)

II. Find maximum scores of the 20 HOG models and 20 LBP models respectively around the detected bounding boxes.

Multi-Context : Inter Class Context

Initial detected objects Searching region Window with maximum score

Inter class learning results:

Multi-Context : Final Contexts

- The original score : 1
- Spatial Context : 6
- Global Context: 20+20
- Inter-Class Context : 20+20
- Total number of context features : 1+6+40+40=87

s	GC_DET	GC_CLS	ICC_HOG	ICC_LBP

SVM is employed for context learning:

 Linear and Kernel SVMs are effective for learning contexts

RBF-SVM performs best in most classes

Results : Boosted HOG-LBP VOC2007 (without contexts)

AND THE RECO

Results : Only Contexts - Improvement : 4%

Baseline is the UOCTTI version 4, VOC2007

Results : VOC2010

- Six classes rank first
- Five classes rank second
- 36.8% mean AP

categories	AP	
aeroplane	53.3	
bicycle	55.3	
bird	19.2	
boat	21	
bottle	30	
bus	54.4	
car	46.7	
cat	41.2	
chair	20	
COW	31.5	
diningtable	20.7	
dog	30.3	
horse	48.6	
motorbike	55.3	
person	46.5	
pottedplant	10.2	
sheep	34.4	
sofa	26.5	
train	50.3	
tvmonitor	40.3	
mAP	36.8	

Conclusion

- For object representation, boosted multiple features are more distinctive than naïve combination
- Utilizing multiple contexts performs well in depressing false positives
- The multi-context information is very effective for multi-classes object detection.

PASCAL VOC 2010

ECCV 2010/Crete/Greece

CASIA

Thank You

Contact: ynyu@nlpr.ia.ac.cn

