

Towards VOC2010 Object Classification Challenge

Boosting Classification with Exclusive Context

National University of Singapore Learning & Vision Group

Shuicheng YAN

Qiang CHEN, Zheng SONG, Si LIU, Xiangyu CHEN, Xiaotong YUAN, Tat-Seng CHUA Panasonic Singapore Laboratories Media Processing Group

Zhongyang HUANG

Yang HUA, Shengmei SHEN

NUS-PSL Submissions

NUSPSL_MFDETSVM

SVM classifier trained with multiple features and detection kernel

NUSPSL_EXCLASSIFIER

Exclusive Classifier: Lasso prediction with exclusive context

NUSPSL_KERNELREGFUSING

Fuse our other independent submissions using kernel regression

Framework

ideas for life

Low Level Features

- ▶ Low level features: SIFT and its variants, LBP, HOG.
- Dense sampling and interest point detector;
- Represented as Bags of Words;

Patch Level Features

Multiple Segmentations

Patch Level Features

Kernel

Nonlinear Kernel for visual features

1

 χ^2 distance based Kernel for low level histogram features

RBF Kernel for patch level features

Detection Kernel

- How to encode the detection result into the classification framework?
 - ✓ Detection result are often combined with classification as post processing.

Detection Kernel

- How to encode the detection result into the classification framework?
 - ✓ Detection result are often combined with classification as post processing.
 - √ We combine the detection result at the feature level.

Detection Feature for Classification

Kernel combination

Classification

- SVM
- Regression
- Lasso Prediction with Exclusive Context

Exclusive Classifier:

Lasso Prediction with Exclusive Context

- Traditional label context: co-occurrence
 - focus on mutually increasing confidences

Exclusive Label Sets

- We focus on the exclusive label context.
 - For an exclusive label set, at most one label can appear.


```
{train, tymonitor, sheep, boat, dingingtable }
{boat, diningtable, horse, sofa}
{cat, aeroplane, horse, motorbike, train}
.....
{sofa, aeroplane, bird, cow, horse, sheep}
```

•Construction for exclusive label sets $\mathcal{G} = \{\mathcal{G}_k\}_{k=1}^K$: Apply the approach: Robust Graph Mode Seeking by Graph Shift (Liu H. and Yan S. ICML'10)

Lasso Prediction with Exclusive Context

Test label vector is penalized by exclusive constraint

• $X = [x_1, ..., x_N]$: training feature set

• $L = [l_1, ..., l_N]$: training label set (multiple label)

• $\mathcal{G} = \{\mathcal{G}_k\}_{k=1}^K$: exclusive label sets

Objective: least reconstruction error while enforcing sparsity within exclusive label sets

Formulation

Main Objective

$$\begin{split} \hat{w} &= \arg\min_{w} \frac{1}{2} \|y - Xw\|_{2}^{2} + \frac{\lambda}{2} \sum_{\mathcal{G}_{k} \in \mathcal{G}} \|z_{\mathcal{G}_{k}}\|_{1}^{2}, \\ s.t. &\quad z = Lw \\ (\hat{w}, \hat{u}) &= \arg\min_{w, u} \frac{1}{2} \|\phi(y) - \phi(X)w\|_{2}^{2} + \frac{\lambda}{2} \sum_{\mathcal{G}_{k} \in \mathcal{G}} \|u_{\mathcal{G}_{k}}\|_{1}^{2}, \\ s.t. &\quad u = Lw \quad \text{(Kernel Version)} \end{split}$$

 Optimization: a thresholded Landweber algorithm combined with Accelerated Proximal Gradient Method

Note: This is unpublished work. Please contact Dr. Yan if you plan to make use of any of the ideas presented

Post Processing

- Kernel regression for fusing all confidences.
 - Learn a nonlinear mapping function from obtained confidence $C = [C_1^T \ C_2^T \ C_3^T]^T$ to ground truth L using validation set.
 - Objective:

$$\min_{W} \| L - W \phi(C) \|_{2}^{2} + \lambda \| W \|_{2}^{2}$$

- Confidence Refinement using exclusive context.
 - High confidence label can depress other labels in the same exclusive set

The results

	SVM	Exclusive	Fusing	Our Best	Other's Best
aeroplane	91.9	91.3	93	93	93.3
bicycle	77. I	77	79	79	77
bird	69.5	70	71.6	71.6	69.9
boat	74.7	75.6	77.8	77.8	77.2
bottle	52.5	50.7	54.3	54.3	53.7
bus	84.3	83.2	85.2	85.2	85.9
car	77.3	77.1	78.6	78.6	80.4
cat	76.2	75.4	78.8	78.8	79.4
chair	63	62.5	64.5	64.5	62.9
cow	63.5	62.6	64	64	66.2
diningtable	62.9	62.7	62.7	62.9	61.1
dog	65	64.6	69.6	69.6	71.1
horse	79.5	77.9	82	82	76.7
motorbike	83.2	81.8	84.4	84.4	81.7
person	91.2	91.1	91.6	91.6	90.2
pottedplant	45.5	44.8	48.6	48.6	53.3
sheep	65.4	64.2	64.9	65.4	66.3
sofa	55	53.2	59.6	59.6	58
train	87	86.3	89.4	89.4	87.5
tvmonitor	77.2	77.1	76.4	77.2	76.2
MAP	72.095	71.455	73.8		

Panasonic ideas for life

Conclusions and Discussion

- Effective detection kernel.
- Exclusive classifier can boost the final classification results, more importantly, it is scalable and perfectly suitable for classification with large category number, e.g. ImageNET.
- Increasing the class size: a bad thing or good thing?
 - ▶ Bad thing: individual classification accuracy may drop down.
 - Good thing: more context (co-occurrence and exclusive) can be utilized.

Acknowledgement

We would thank Mr. Tsutomu MURAJI, Mr. Tsutomu UENOYAMA from Panasonic Corporation for their support to this collaboration project.

