<

& PASCAL2

‘ Pattern Analysis, Statistical Modelling ana
Computationa I_‘;J.;:l'nlrt{;}

Object detection based on data decomposition,
spatial mixture modeling and context

Junge Zhang, Yinan Yu, Yongzhen Huang, Chong Wang, Weigiang Ren, Jinchen Wu
Advisors: Kaiqi Huang and Tieniu Tan

Intelligent Recognition & Digital Security Group

National Laboratory of Pattern Recognition,
Institute of Automation, CAS

National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, P. R. China %




I
Background

+ Object detection is a fundamental function for visual surveillance
and video analysis
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e
Background

« Video surveillance, Human-Machine Interface, Multimedia analysis. ..
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e
Methods

- Data Decomposition (DD) for part based
model

- Spatial Mixture Modeling (SMM)
- Context Learning (NLPR_CLYS)
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Data decomposition for part based model

- Previous work
o Felzenszwalb et al’ deformable part based model (DPBM)!!

detection root filter part filters deformation

. Zhang et al’s boosted LSHOG-LBP for DPBMP!

Learning feature
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] Training part based detector
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Data decomposition for part based model

« Limits
- The computational complexity is very large, especially when it is

extended to enhanced models via multiple features, more flexible
components or part models.

« Moreover, it brings the risk of over-fitting when the length of those
models becomes longer and longer

- The original part based model is not “deformable” enough.
- How to tackle these problems?
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Data decomposition for part based model

» Pedersoli et al’s work!?] indicates the inference cost is

; O(P;—Z(D +6%C))

- The dimension of filters and search space dominates the
computation cost.

- Coarse-to-fine inference: reduce the search space

* Our goal and solution
- Reduce the dimension of filters.

- First, we’d like to maintain the high accuracy of those enhanced
models via multiple features, more flexible components or parts.
On the other hand, the time and memory cost should be reduced.
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Data decomposition for part based model

- Decompose original filter space into lower dimensional
space.

- Reconstruct the original filter with low cost
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Data decomposition for part based model

Feature vector
f=8X4XD

- Data decomposition on root filter level or cell level?
-+ Cell level
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Data decomposition for part based model

» Cell level data decomposition

background object

- But, some cells correspond to background,
others to objects

- Therefore, the decomposition method
should be unsupervised, label
independent, efficient

- PCA 1is one of those choices.
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Data decomposition for part based model

- With PCA, we decompose each cell filter into a lower
dimensional space.

- As known that, PCA is sensitive to the scaling of variables

coming from different sources of data. (In our system,
HOG and LBP are utilized)

- Data preprocessing
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Data decomposition for part based model

- Similar to original DPBM, models are trained for
horizontal symmetry to avoid over-fitting.

- How to find the symmetric model in the decomposition
based framework?
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Data decomposition for part based model

» Suppose the original filter extracted from left side images
is fi

- Its corresponding factorized feature and symmetric filter
is m; and f,., respectively.

- We get

m, =g(f,)

- g(.) is the decomposition function. Then we can regress
m, on m,. Direct back projection also works.
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Empirical results

« Determine the number of PCs

On aeroplane category
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Original: 31(HOG) + 59(LBP) = 90
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Empirical results

On cat category

== simple: 23.3
-4-DD: 25.5

» Performance
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VOC2007 Methods Training Test AP
(hour) (hour)
cat simple 24.1 3.5 23.3
DD 18.2 1.8 25.5

On average it takes about 1.5s per image during testing

Simple: naive combination; DD: data 10G vs 4G
decomposition
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e
Methods

- Data Decomposition (DD) for part based
model

- Spatial Mixture Modeling (SMM)
- Context Learning (NLPR_CLYS)
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Spatial mixture modeling

Real World

/ . . » Part-Based
[ Viewpoint } Model
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Same aspect ratio, different

viewpoint 1. Components based on aspect
ratio
Pose } 2. Deformable parts whose

location obeys single
Gaussian distribution: one

Different pose with the same : . .
fixed optimal location.

aspect ratio should have
different part location as well.
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Different viewpoint but the same aspect
ratio P1
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Ditferent poses

The optimal part location in
P1 should be different from P2
and P3. It’s unfair to use the
same penalty deformation
distance.
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Our solution

[ Original DPBM }

Perform detection on labeled positives to obtain
[ Detection } latent information, namely, location of each part in
each positive sample

[ Clustering } Clustering of the locations of each part

[ Uodatin } Update the model with clustering centers as the
P new mixture anchors of parts

N

E Spatial mixture J
embedded Model
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Our model

Examples: aeroplane and cat models wherein each part possesses 2
optimal locations

|
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Empirical results

On aeroplane category
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Empirical results

On bus category
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M Baseline[1]

m LEO[4]

w MKL[5]
m Boost[3]
W Proposed
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e
Methods

- Data Decomposition (DD) for part based
model

- Spatial Mixture Modeling (SMM)
- Context Learning (NLPR_CLYS)
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Post-processing: Context Learning

- Scores from 20 categories classification results,
from NLPR_CLS@VOC’2011, 78.2% mAP, 8 first
and 9 second places.

« Others:

- Maximum scores from 20 categories detectors!!l.

- The overlap between candidate windows and
supervised segmentation regionl°l.

- Spatial prior!!
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Our Classification: NLPR_CLS

- Partial Least Squares (PLS)

- Little memory, over 16000 compression ratio (reduce from 500k to 30),
scalable to multiple features

» Preserving discrimination, 0.5%~1% improvement usually

- Semi-Semantic Visual Words (SSVW)
- Discriminative Visual Words from Deformable Part Based Modell!]
- Semi-Semantic level image representation
- Explicit code semantic relationship
+ Low-dimensional high-order code co-occurrence

- Efficient Multiple Linear Kernel Learning (EMLKL)

- Find appropriate weights for multiple features
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Thanlks very much

- If you have any question, please drop email to: jgzhang@nlpr.ia.ac.cn
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