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5 years of PASCAL people detection
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Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

fβ(x) = max
z∈Z(x)

β · Φ(x, z). (1)

Here β is a vector of model parameters, z are latent values, and Φ(x, z) is a feature vector.

In the case of one of our star models β is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and Φ(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of
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Different flavors of part models
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Figure 2: Our mixture-of-trees model encodes topological changes due to viewpoint. Red lines denote springs between pairs
of parts; note there are no closed loops, maintaining the tree property. All trees make use of a common, shared pool of part
templates, which makes learning and inference efficient.

[1] and face.com [2] (the best-performing system on LFW
benchmark [3]). We first show results in controlled lab
settings, using the well-known MultiPIE benchmark [16].
We definitively outperform past work in all tasks, partic-
ularly so for extreme viewpoints. As our results saturate
this benchmark, we introduce a new “in the wild” dataset of
Flickr images annotated with faces, poses, and landmarks.
In terms of face detection, our model substantially outper-
forms ViolaJones, and is on par with the commercial sys-
tems above. In terms of pose and landmark estimation,
our results dominate even commercial systems. Our results
are particularly impressive since our model is trained with
thousands of images, while commercial systems use up to
billions of examples [32]. Another result of our analysis is
evidence of large gap between currently-available academic
solutions and commercial systems; we will address this by
releasing open-source software.

2. Related Work
As far as we know, no previous work jointly addresses

the tasks of face detection, pose estimation, and landmark
estimation. However, there is a rich history of all three in
vision. Space does not allow for a full review; we refer
the reader to the recent surveys [39, 23, 37]. We focus on
methods most related to ours.

Face detection is dominated by discriminatively-trained
scanning window classifiers [29, 20, 24, 18], most ubiqui-
tous of which is the Viola Jones detector [35] due its open-
source implementation in the OpenCV library. Our system
is also trained discriminatively, but with much less training
data, particularly when compared to commercial systems.

Pose estimation tends to be addressed in a video scenario
[39], or a controlled lab setting that assumes the detection
problem is solved, such as the MultiPIE [16] or FERET [28]
benchmarks. Most methods use explicit 3D models [6] or
2D view-based models [27, 10, 34]. We use view-based
models that share a central pool of parts. From this perspec-
tive, our approach is similar to aspect-graphs that reason
about topological changes between 2D views of an object
[7].

Facial landmark estimation dates back to the classic ap-
proaches of Active Appearance Models (AAMs) [9] and
elastic graph matching [22, 36]. [17] extend the idea to

3D by building a model of 3D landmarks and their asso-
ciated view-based patches. Recent work has focused on
global spatial models built on top of local part detectors,
sometimes known as Constrained Local Models (CLMs)
[11, 31, 5]. Notably, all such work assumes a densely con-
nected spatial model, requiring the need for approximate
matching algorithms. By using a tree model, we can use
efficient dynamic programming algorithms to find globally
optimal solutions.

From a modeling perspective, our approach is similar to
those that reason about mixtures of deformable part models
[14, 38]. In particular [19] use mixtures of trees for face de-
tection and [13] use mixtures of trees for landmark estima-
tion. Our model simultaneously addresses both with state-
of-the-art results, in part because it is aggressively trained
to do so in a discriminative, max-margin framework. For
example, previous approaches train part templates indepen-
dantly, while our templates are trained “contextually” in a
joint optimization. We also explore part sharing for reduc-
ing model size and computation, as in [33, 25].

3. Model
Our model is based on mixture of trees with a shared

pool of parts V . We model each facial landmark as a part
and use global mixtures to capture topological changes due
to viewpoint. We show such mixtures for viewpoint in
Fig.2. We will later show that global mixtures can also
be used to capture gross deformation changes for a single
viewpoint, such as changes in expression.

Tree structured part model: We write each tree Tm =
(Vm, Em) as a linearly-parameterized, tree-structured pic-
torial structure [38], where m indicates a mixture and Vm ⊆
V . Let us write I for an image, and li = (xi, yi) for the
pixel location of part i. We score a configuration of parts
L = {li : i ∈ V } as:

S(I, L,m) = Appm(I, L) + Shapem(L) + αm (1)

Appm(I, L) =
�

i∈Vm

wm
i · φ(I, li) (2)

Shapem(L) =
�

ij∈Em

amijdx
2 + bmijdx+ cmijdy

2 + dmijdy

(3)

2
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Figure 1: Shallow grammar model. This figure illustrates a shallow version of our grammar model
(Section 2.1). This model has six person parts and an occlusion model (“occluder”), each of which
comes in one of two subtypes. A detection places one subtype of each visible part at a location
and scale in the image. If the derivation does not place all parts it must place the occluder. Parts
are allowed to move relative to each other, but their displacements are constrained by deformation
penalties.

Then score(A,ω) = FA · φ(H,ω) is the dot product between the filter coefficients and the features
in a subwindow of the feature map pyramid, φ(H,ω). We use the variant of histogram of oriented
gradient (HOG [5]) features described in [10].

We consider models with productions specified by two kinds of schemas (a schema is a template for
generating productions). A structure schema specifies one production for each placement ω ∈ Ω,

X(ω)
s−→ { Y1(ω ⊕ δ1), . . . , Yn(ω ⊕ δn) }. (3)

Here the δi specify constant displacements within the feature map pyramid. Structure schemas can
be used to define decompositions of objects into other objects.

Let ∆ be the set of possible displacements within a single scale of a feature map pyramid. A
deformation schema specifies one production for each placement ω ∈ Ω and displacement δ ∈ ∆,

X(ω)
α·φ(δ)−→ { Y (ω ⊕ δ) }. (4)

Here φ(δ) is a feature vector and α is a vector of deformation parameters. Deformation schemas
can be used to define deformable models. We define φ(δ) = (dx, dy, dx2

, dy
2) so that deformation

scores are quadratic functions of the displacements.

The parameters of our models are defined by a weight vector w with entries for the score of each
structure schema, the deformation parameters of each deformation schema and the filter coefficients
associated with each terminal. Then score(T ) = w · Φ(T ), where Φ(T ) is the sum of (sparse)
feature vectors associated with each placed terminal and production in T .

2.1 A grammar model for detecting people

Each component in the person model learned by the voc-release4 system [12] is tuned to detect
people under a prototypical visibility pattern. Based on this observation we designed, by hand, the
structure of a grammar that models visibility by using structural variability and optional parts. For
clarity, we begin by describing a shallow model (Figure 1) that places all filters at the same resolution
in the feature map pyramid. After explaining this model, we describe a deeper model that includes
deformable subparts at higher resolutions.

Fine-grained occlusion Our grammar model has a start symbol Q that can be expanded using one
of six possible structure schemas. These choices model different degrees of visibility ranging from
heavy occlusion (only the head and shoulders are visible) to no occlusion at all.

Beyond modeling fine-grained occlusion patterns when compared to the mixture models from [7]
and [12], our grammar model is also richer in a number of ways. In Section 5 we show that each of
the following modeling choices improves detection performance.
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First, a look back at part models
Why do part models “work”?

Each distinct placement of parts yields a unique global template

Figure 2: Our mixture-of-trees model encodes topological changes due to viewpoint. Red lines denote springs between pairs
of parts; note there are no closed loops, maintaining the tree property. All trees make use of a common, shared pool of part
templates, which makes learning and inference efficient.

community and commercial systems such as Google Picasa
[1] and face.com [2] (the best-performing system on LFW
benchmark [3]). We first show results in controlled lab
settings, using the well-known MultiPIE benchmark [16].
We definitively outperform past work in all tasks, partic-
ularly so for extreme viewpoints. As our results saturate
this benchmark, we introduce a new “in the wild” dataset of
Flickr images annotated with faces, poses, and landmarks.
In terms of face detection, our model substantially outper-
forms ViolaJones, and is on par with the commercial sys-
tems above. In terms of pose and landmark estimation, our
results dominate even commercial systems. Our results are
particularly impressive since our model is trained with hun-
dreds of faces, while commercial systems use up to billions
of examples [36]. Another result of our analysis is evidence
of large gap between currently-available academic solutions
and commercial systems; we will address this by releasing
open-source software.

2. Related Work
As far as we know, no previous work jointly addresses

the tasks of face detection, pose estimation, and landmark
estimation. However, there is a rich history of all three in
vision. Space does not allow for a full review; we refer
the reader to the recent surveys [42, 27, 40]. We focus on
methods most related to ours.

Face detection is dominated by discriminatively-trained
scanning window classifiers [33, 22, 28, 18], most ubiqui-
tous of which is the Viola Jones detector [38] due its open-
source implementation in the OpenCV library. Our system
is also trained discriminatively, but with much less training
data, particularly when compared to commercial systems.

Pose estimation tends to be addressed in a video scenario
[42], or a controlled lab setting that assumes the detection
problem is solved, such as the MultiPIE [16] or FERET [32]
benchmarks. Most methods use explicit 3D models [6, 17]
or 2D view-based models [31, 10, 21]. We use view-based
models that share a central pool of parts. From this perspec-
tive, our approach is similar to aspect-graphs that reason
about topological changes between 2D views of an object
[7].

Facial landmark estimation dates back to the classic ap-
proaches of Active Appearance Models (AAMs) [9, 26] and

elastic graph matching [25, 39]. Recent work has focused
on global spatial models built on top of local part detectors,
sometimes known as Constrained Local Models (CLMs)
[11, 35, 5]. Notably, all such work assumes a densely con-
nected spatial model, requiring the need for approximate
matching algorithms. By using a tree model, we can use
efficient dynamic programming algorithms to find globally
optimal solutions.

From a modeling perspective, our approach is similar to
those that reason about mixtures of deformable part models
[14, 41]. In particular [19] use mixtures of trees for face de-
tection and [13] use mixtures of trees for landmark estima-
tion. Our model simultaneously addresses both with state-
of-the-art results, in part because it is aggressively trained
to do so in a discriminative, max-margin framework. For
example, previous approaches train part templates indepen-
dantly, while our templates are trained “contextually” in a
joint optimization. We also explore part sharing for reduc-
ing model size and computation, as in [37, 29].

3. Model

Our model is based on mixture of trees with a shared
pool of parts V . We model every facial landmark as a
part and use global mixtures to capture topological changes
due to viewpoint. We show such mixtures for viewpoint
in Fig.2. We will later show that global mixtures can also
be used to capture gross deformation changes for a single
viewpoint, such as changes in expression.

Tree structured part model: We write each tree Tm =
(Vm, Em) as a linearly-parameterized, tree-structured pic-
torial structure [41], where m indicates a mixture and Vm ⊆
V . Let us write I for an image, and li = (xi, yi) for the
pixel location of part i. We score a configuration of parts
L = {li : i ∈ V } as:

S(I, L,m) = Appm(I, L) + Shapem(L) + αm (1)

Appm(I, L) =
�
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Figure 2: Our mixture-of-trees model encodes topological changes due to viewpoint. Red lines denote springs between pairs
of parts; note there are no closed loops, maintaining the tree property. All trees make use of a common, shared pool of part
templates, which makes learning and inference efficient.
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ularly so for extreme viewpoints. As our results saturate
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Flickr images annotated with faces, poses, and landmarks.
In terms of face detection, our model substantially outper-
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tems above. In terms of pose and landmark estimation, our
results dominate even commercial systems. Our results are
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dreds of faces, while commercial systems use up to billions
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of large gap between currently-available academic solutions
and commercial systems; we will address this by releasing
open-source software.
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to do so in a discriminative, max-margin framework. For
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dantly, while our templates are trained “contextually” in a
joint optimization. We also explore part sharing for reduc-
ing model size and computation, as in [37, 29].

3. Model

Our model is based on mixture of trees with a shared
pool of parts V . We model every facial landmark as a
part and use global mixtures to capture topological changes
due to viewpoint. We show such mixtures for viewpoint
in Fig.2. We will later show that global mixtures can also
be used to capture gross deformation changes for a single
viewpoint, such as changes in expression.

Tree structured part model: We write each tree Tm =
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Figure 2: Our mixture-of-trees model encodes topological changes due to viewpoint. Red lines denote springs between pairs
of parts; note there are no closed loops, maintaining the tree property. All trees make use of a common, shared pool of part
templates, which makes learning and inference efficient.
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ularly so for extreme viewpoints. As our results saturate
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Flickr images annotated with faces, poses, and landmarks.
In terms of face detection, our model substantially outper-
forms ViolaJones, and is on par with the commercial sys-
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results dominate even commercial systems. Our results are
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of large gap between currently-available academic solutions
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Figure 2: Our mixture-of-trees model encodes topological changes due to viewpoint. Red lines denote springs between pairs
of parts; note there are no closed loops, maintaining the tree property. All trees make use of a common, shared pool of part
templates, which makes learning and inference efficient.
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ularly so for extreme viewpoints. As our results saturate
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forms ViolaJones, and is on par with the commercial sys-
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results dominate even commercial systems. Our results are
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dreds of faces, while commercial systems use up to billions
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of large gap between currently-available academic solutions
and commercial systems; we will address this by releasing
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nected spatial model, requiring the need for approximate
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those that reason about mixtures of deformable part models
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example, previous approaches train part templates indepen-
dantly, while our templates are trained “contextually” in a
joint optimization. We also explore part sharing for reduc-
ing model size and computation, as in [37, 29].
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pool of parts V . We model every facial landmark as a
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due to viewpoint. We show such mixtures for viewpoint
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be used to capture gross deformation changes for a single
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Tree structured part model: We write each tree Tm =
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torial structure [41], where m indicates a mixture and Vm ⊆
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Figure 2: Our mixture-of-trees model encodes topological changes due to viewpoint. Red lines denote springs between pairs
of parts; note there are no closed loops, maintaining the tree property. All trees make use of a common, shared pool of part
templates, which makes learning and inference efficient.
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ularly so for extreme viewpoints. As our results saturate
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forms ViolaJones, and is on par with the commercial sys-
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results dominate even commercial systems. Our results are
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dreds of faces, while commercial systems use up to billions
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of large gap between currently-available academic solutions
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From a modeling perspective, our approach is similar to
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example, previous approaches train part templates indepen-
dantly, while our templates are trained “contextually” in a
joint optimization. We also explore part sharing for reduc-
ing model size and computation, as in [37, 29].

3. Model

Our model is based on mixture of trees with a shared
pool of parts V . We model every facial landmark as a
part and use global mixtures to capture topological changes
due to viewpoint. We show such mixtures for viewpoint
in Fig.2. We will later show that global mixtures can also
be used to capture gross deformation changes for a single
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Tree structured part model: We write each tree Tm =
(Vm, Em) as a linearly-parameterized, tree-structured pic-
torial structure [41], where m indicates a mixture and Vm ⊆
V . Let us write I for an image, and li = (xi, yi) for the
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Figure 2: Our mixture-of-trees model encodes topological changes due to viewpoint. Red lines denote springs between pairs
of parts; note there are no closed loops, maintaining the tree property. All trees make use of a common, shared pool of part
templates, which makes learning and inference efficient.
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Figure 2: Our mixture-of-trees model encodes topological changes due to viewpoint. Red lines denote springs between pairs
of parts; note there are no closed loops, maintaining the tree property. All trees make use of a common, shared pool of part
templates, which makes learning and inference efficient.

community and commercial systems such as Google Picasa
[1] and face.com [2] (the best-performing system on LFW
benchmark [3]). We first show results in controlled lab
settings, using the well-known MultiPIE benchmark [16].
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particularly impressive since our model is trained with hun-
dreds of faces, while commercial systems use up to billions
of examples [36]. Another result of our analysis is evidence
of large gap between currently-available academic solutions
and commercial systems; we will address this by releasing
open-source software.

2. Related Work
As far as we know, no previous work jointly addresses

the tasks of face detection, pose estimation, and landmark
estimation. However, there is a rich history of all three in
vision. Space does not allow for a full review; we refer
the reader to the recent surveys [42, 27, 40]. We focus on
methods most related to ours.

Face detection is dominated by discriminatively-trained
scanning window classifiers [33, 22, 28, 18], most ubiqui-
tous of which is the Viola Jones detector [38] due its open-
source implementation in the OpenCV library. Our system
is also trained discriminatively, but with much less training
data, particularly when compared to commercial systems.

Pose estimation tends to be addressed in a video scenario
[42], or a controlled lab setting that assumes the detection
problem is solved, such as the MultiPIE [16] or FERET [32]
benchmarks. Most methods use explicit 3D models [6, 17]
or 2D view-based models [31, 10, 21]. We use view-based
models that share a central pool of parts. From this perspec-
tive, our approach is similar to aspect-graphs that reason
about topological changes between 2D views of an object
[7].

Facial landmark estimation dates back to the classic ap-
proaches of Active Appearance Models (AAMs) [9, 26] and

elastic graph matching [25, 39]. Recent work has focused
on global spatial models built on top of local part detectors,
sometimes known as Constrained Local Models (CLMs)
[11, 35, 5]. Notably, all such work assumes a densely con-
nected spatial model, requiring the need for approximate
matching algorithms. By using a tree model, we can use
efficient dynamic programming algorithms to find globally
optimal solutions.

From a modeling perspective, our approach is similar to
those that reason about mixtures of deformable part models
[14, 41]. In particular [19] use mixtures of trees for face de-
tection and [13] use mixtures of trees for landmark estima-
tion. Our model simultaneously addresses both with state-
of-the-art results, in part because it is aggressively trained
to do so in a discriminative, max-margin framework. For
example, previous approaches train part templates indepen-
dantly, while our templates are trained “contextually” in a
joint optimization. We also explore part sharing for reduc-
ing model size and computation, as in [37, 29].

3. Model

Our model is based on mixture of trees with a shared
pool of parts V . We model every facial landmark as a
part and use global mixtures to capture topological changes
due to viewpoint. We show such mixtures for viewpoint
in Fig.2. We will later show that global mixtures can also
be used to capture gross deformation changes for a single
viewpoint, such as changes in expression.

Tree structured part model: We write each tree Tm =
(Vm, Em) as a linearly-parameterized, tree-structured pic-
torial structure [41], where m indicates a mixture and Vm ⊆
V . Let us write I for an image, and li = (xi, yi) for the
pixel location of part i. We score a configuration of parts
L = {li : i ∈ V } as:

S(I, L,m) = Appm(I, L) + Shapem(L) + αm (1)

Appm(I, L) =
�

i∈Vm

wm
i · φ(I, li) (2)

Shapem(L) =
�

ij∈Em

amijdx
2 + bmijdx+ cmijdy

2 + dmijdy

(3)

Figure 2: Our mixture-of-trees model encodes topological changes due to viewpoint. Red lines denote springs between pairs
of parts; note there are no closed loops, maintaining the tree property. All trees make use of a common, shared pool of part
templates, which makes learning and inference efficient.

community and commercial systems such as Google Picasa
[1] and face.com [2] (the best-performing system on LFW
benchmark [3]). We first show results in controlled lab
settings, using the well-known MultiPIE benchmark [16].
We definitively outperform past work in all tasks, partic-
ularly so for extreme viewpoints. As our results saturate
this benchmark, we introduce a new “in the wild” dataset of
Flickr images annotated with faces, poses, and landmarks.
In terms of face detection, our model substantially outper-
forms ViolaJones, and is on par with the commercial sys-
tems above. In terms of pose and landmark estimation, our
results dominate even commercial systems. Our results are
particularly impressive since our model is trained with hun-
dreds of faces, while commercial systems use up to billions
of examples [36]. Another result of our analysis is evidence
of large gap between currently-available academic solutions
and commercial systems; we will address this by releasing
open-source software.

2. Related Work
As far as we know, no previous work jointly addresses

the tasks of face detection, pose estimation, and landmark
estimation. However, there is a rich history of all three in
vision. Space does not allow for a full review; we refer
the reader to the recent surveys [42, 27, 40]. We focus on
methods most related to ours.

Face detection is dominated by discriminatively-trained
scanning window classifiers [33, 22, 28, 18], most ubiqui-
tous of which is the Viola Jones detector [38] due its open-
source implementation in the OpenCV library. Our system
is also trained discriminatively, but with much less training
data, particularly when compared to commercial systems.

Pose estimation tends to be addressed in a video scenario
[42], or a controlled lab setting that assumes the detection
problem is solved, such as the MultiPIE [16] or FERET [32]
benchmarks. Most methods use explicit 3D models [6, 17]
or 2D view-based models [31, 10, 21]. We use view-based
models that share a central pool of parts. From this perspec-
tive, our approach is similar to aspect-graphs that reason
about topological changes between 2D views of an object
[7].

Facial landmark estimation dates back to the classic ap-
proaches of Active Appearance Models (AAMs) [9, 26] and

elastic graph matching [25, 39]. Recent work has focused
on global spatial models built on top of local part detectors,
sometimes known as Constrained Local Models (CLMs)
[11, 35, 5]. Notably, all such work assumes a densely con-
nected spatial model, requiring the need for approximate
matching algorithms. By using a tree model, we can use
efficient dynamic programming algorithms to find globally
optimal solutions.

From a modeling perspective, our approach is similar to
those that reason about mixtures of deformable part models
[14, 41]. In particular [19] use mixtures of trees for face de-
tection and [13] use mixtures of trees for landmark estima-
tion. Our model simultaneously addresses both with state-
of-the-art results, in part because it is aggressively trained
to do so in a discriminative, max-margin framework. For
example, previous approaches train part templates indepen-
dantly, while our templates are trained “contextually” in a
joint optimization. We also explore part sharing for reduc-
ing model size and computation, as in [37, 29].

3. Model

Our model is based on mixture of trees with a shared
pool of parts V . We model every facial landmark as a
part and use global mixtures to capture topological changes
due to viewpoint. We show such mixtures for viewpoint
in Fig.2. We will later show that global mixtures can also
be used to capture gross deformation changes for a single
viewpoint, such as changes in expression.

Tree structured part model: We write each tree Tm =
(Vm, Em) as a linearly-parameterized, tree-structured pic-
torial structure [41], where m indicates a mixture and Vm ⊆
V . Let us write I for an image, and li = (xi, yi) for the
pixel location of part i. We score a configuration of parts
L = {li : i ∈ V } as:

S(I, L,m) = Appm(I, L) + Shapem(L) + αm (1)

Appm(I, L) =
�

i∈Vm

wm
i · φ(I, li) (2)

Shapem(L) =
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Spatial model defines bias or “prior” 

f(x) = max
z∈Z

wz · x+ bz
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Star bike model
(PASCAL 2007)



Star car model
(PASCAL 2007)



Tree car model 
(with local colored mixtures)
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Abstract

We present an approach to detecting and analyzing the 3D configuration of objects

in real-world images with heavy occlusion and clutter. We focus on the application

of finding and analyzing cars. We do so with a two-stage model; the first stage

reasons about 2D shape and appearance variation due to within-class variation

(station wagons look different than sedans) and changes in viewpoint. Rather

than using a view-based model, we describe a compositional representation that

models a large number of effective views and shapes using a small number of

local view-based templates. We use this model to propose candidate detections

and 2D estimates of shape. These estimates are then refined by our second stage,

using an explicit 3D model of shape and viewpoint. We use a morphable model

to capture 3D within-class variation, and use a weak-perspective camera model

to capture viewpoint. We learn all model parameters from 2D annotations. We

demonstrate state-of-the-art accuracy for detection, viewpoint estimation, and 3D

shape reconstruction on challenging images from the PASCAL VOC 2011 dataset.

1 Introduction

Figure 1: We describe two-stage models for detecting and analyzing the 3D shape of objects in

unconstrained images. In the first stage, our models reason about 2D appearance and shape using

variants of deformable part models (DPMs). We use global mixtures of trees with local mixtures

of gradient-based part templates (top-left). Global mixtures capture constraints on visibility and

shape (headlights are only visible in certain views at certain locations), while local mixtures capture

constraints on appearance (headlights look different in different views). Our 2D models localize

even fully-occluded landmarks, shown as hollow circles and dashed lines in (top-middle). We feed

this output to our second stage, which directly reasons about 3D shape and camera viewpoint. We

show the reconstructed 3D model and associated ground-plane (assuming its parallel to the car body)

on (top-right). The bottom row shows 3D reconstructions from four novel viewpoints.

A grand challenge in machine vision is the task of understanding 3D objects from 2D images.

Classic approaches based on 3D geometric models [2] could sometimes exhibit brittle behavior on

cluttered, “in-the-wild” images. Contemporary object recognition methods tend to build statistical

models of 2D appearance, consisting of classifiers trained with large training sets using engineered

1



Variable-structure grammar models

Parts 1-6 (no occlusion) Parts 1-4 & occluder Parts 1-2 & occluder

Example detections and derived filtersSubtype 1 Subtype 2

Part 1

Part 2

Part 3

Part 4

Part 5

Part 6

Occluder

Figure 1: Shallow grammar model. This figure illustrates a shallow version of our grammar model
(Section 2.1). This model has six person parts and an occlusion model (“occluder”), each of which
comes in one of two subtypes. A detection places one subtype of each visible part at a location
and scale in the image. If the derivation does not place all parts it must place the occluder. Parts
are allowed to move relative to each other, but their displacements are constrained by deformation
penalties.

Then score(A,ω) = FA · φ(H,ω) is the dot product between the filter coefficients and the features
in a subwindow of the feature map pyramid, φ(H,ω). We use the variant of histogram of oriented
gradient (HOG [5]) features described in [10].

We consider models with productions specified by two kinds of schemas (a schema is a template for
generating productions). A structure schema specifies one production for each placement ω ∈ Ω,

X(ω)
s−→ { Y1(ω ⊕ δ1), . . . , Yn(ω ⊕ δn) }. (3)

Here the δi specify constant displacements within the feature map pyramid. Structure schemas can
be used to define decompositions of objects into other objects.

Let ∆ be the set of possible displacements within a single scale of a feature map pyramid. A
deformation schema specifies one production for each placement ω ∈ Ω and displacement δ ∈ ∆,

X(ω)
α·φ(δ)−→ { Y (ω ⊕ δ) }. (4)

Here φ(δ) is a feature vector and α is a vector of deformation parameters. Deformation schemas
can be used to define deformable models. We define φ(δ) = (dx, dy, dx2

, dy
2) so that deformation

scores are quadratic functions of the displacements.

The parameters of our models are defined by a weight vector w with entries for the score of each
structure schema, the deformation parameters of each deformation schema and the filter coefficients
associated with each terminal. Then score(T ) = w · Φ(T ), where Φ(T ) is the sum of (sparse)
feature vectors associated with each placed terminal and production in T .

2.1 A grammar model for detecting people

Each component in the person model learned by the voc-release4 system [12] is tuned to detect
people under a prototypical visibility pattern. Based on this observation we designed, by hand, the
structure of a grammar that models visibility by using structural variability and optional parts. For
clarity, we begin by describing a shallow model (Figure 1) that places all filters at the same resolution
in the feature map pyramid. After explaining this model, we describe a deeper model that includes
deformable subparts at higher resolutions.

Fine-grained occlusion Our grammar model has a start symbol Q that can be expanded using one
of six possible structure schemas. These choices model different degrees of visibility ranging from
heavy occlusion (only the head and shoulders are visible) to no occlusion at all.

Beyond modeling fine-grained occlusion patterns when compared to the mixture models from [7]
and [12], our grammar model is also richer in a number of ways. In Section 5 we show that each of
the following modeling choices improves detection performance.

3

Girshick, Felzenszwalb, & McAllester 11



DPMs as large-mixture models

f(x) = max
z∈Z

wz · x+ bz

- “Double-counting” manifests simply as 
too strong of a weight

- Suggests jointly learning parts is crucial
(verified empirically)



Case study



Qualitative results

Zhu & Ramanan CVPR 12
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DPMs vs explicit mixtures

Mixtures of rigid templates Part model

“Exemplar SVMs” 
Malisiewicz et al ICCV 11

http://www.cs.cmu.edu/~tmalisie/
http://www.cs.cmu.edu/~tmalisie/


An analysis of part models

Zhu et al, BMVC 2012
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Supervised tree DPM
Mixtures



Why do explicit mixtures not (appear to) approach DPM performance?

Mixtures of rigid templates Part model

1) Share parameters across mixtures
2) “Synthesize” new rigid templates not seen during training
3) Efficiently search over mixtures using dynamic programming

Compared to a mixture of exemplars (Malisiewicz et al), part models...

http://www.cs.cmu.edu/~tmalisie/
http://www.cs.cmu.edu/~tmalisie/


Mixtures of rigid 
templates

Part modelMixtures of rigid templates 
with tied parameters

 (given by parts)

1) Share parameters across mixtures
2) “Synthesize” new rigid templates not seen during training

To examine (1) vs (2), lets define mixture of exemplars with sharing

Part model vs. large collections of templates
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Mixtures

An analysis of part models

Zhu et al, BMVC 2012
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Mixtures with sharing
Mixtures

An analysis of part models

Zhu et al, BMVC 2012

reduce noise in mixtures by sharing parameters
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Supervised tree DPM
Mixtures with sharing
Mixtures

An analysis of part models

Hallucinating new templates is even more beneficial than sharing
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Supervised tree DPM
Mixtures with sharing
Mixtures

An argument against “big-data”

One can train a state-of-art face detector (Google 
Picassa & Facebook’s face.com) with 100 faces!
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Supervised tree structure is important



PASCAL 10X data
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Figure 7: (a)(c) show the monotonic non-decreasing curves when we add more training data.
The performance saturates quickly at a few hundreds training samples. (b)(d) show how the
performance changes with more mixtures K. Given a fixed number of training samples N,
the performance increases at the beginning, and decreases when we split the training data
too much so that each mixture only has few samples.
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Figure 8: We plot the best perfor-
mance at varying amount of training
data for 11 PASCAL categories. All
the curves saturate with a relatively
small amount of training data.

dataset. We evaluate performance on the PASCAL VOC 2010 trainset (Fig.8) because anno-
tations for the testset are not public. Here we cluster the training data into K = [1,2,4,8,16]
mixture components, and N = [50, 100, 500, 1000, 3000, Nmax] training samples, where Nmax
is the number of training samples collected for the given category (see table in supplemen-
tary materials). For each N, we select the best C and K through cross-validation. Results
across all categories suggest that performance is indeed saturating with respect to increasing
the amount of training data.

Experiment 4: Are we at the Bayes risk for the HOG feature space? If increasing
model complexity does not improve performance, it is natural to ask if we have simply
reached the limits imposed by the Bayes risk of the object classification task in the HOG
feature space. One can quickly discard this possibility by comparing our model to other
representations trained with the same data and feature space. We take the widely-used latent
deformable part model (DPM) of [6] as a starting point. It performs better than our best rigid
mixture model, e.g. on faces, with an AP of 80% compared to 76%. We also compare to the
recent DPM of [13], which differs from [6] in its use of additional supervision, shared parts,
multi-view trees to define spatial constraints. This model further improves performance to
91% (Sup. DPM in Fig.10), which is clearly a lower-bound on the optimal performance (the
Bayes risk). Obviously our mixture models have not hit the limits of HOG. But why is it that
they do not approach 91% given additional training data?

To understand the difference between these models, it is useful to think of the DPM as
an exponentially-large mixture of rigid templates. We explicitly derive this relationship in
Section 2 of our supplementary material. Consider a P-part model, where each part can take

(without parts)
Zhu et al, BMVC 2012



Claim: representation more 
important than data

Parts 1-6 (no occlusion) Parts 1-4 & occluder Parts 1-2 & occluder

Example detections and derived filtersSubtype 1 Subtype 2

Part 1

Part 2

Part 3

Part 4

Part 5

Part 6

Occluder

Figure 1: Shallow grammar model. This figure illustrates a shallow version of our grammar model
(Section 2.1). This model has six person parts and an occlusion model (“occluder”), each of which
comes in one of two subtypes. A detection places one subtype of each visible part at a location
and scale in the image. If the derivation does not place all parts it must place the occluder. Parts
are allowed to move relative to each other, but their displacements are constrained by deformation
penalties.

Then score(A,ω) = FA · φ(H,ω) is the dot product between the filter coefficients and the features
in a subwindow of the feature map pyramid, φ(H,ω). We use the variant of histogram of oriented
gradient (HOG [5]) features described in [10].

We consider models with productions specified by two kinds of schemas (a schema is a template for
generating productions). A structure schema specifies one production for each placement ω ∈ Ω,

X(ω)
s−→ { Y1(ω ⊕ δ1), . . . , Yn(ω ⊕ δn) }. (3)

Here the δi specify constant displacements within the feature map pyramid. Structure schemas can
be used to define decompositions of objects into other objects.

Let ∆ be the set of possible displacements within a single scale of a feature map pyramid. A
deformation schema specifies one production for each placement ω ∈ Ω and displacement δ ∈ ∆,

X(ω)
α·φ(δ)−→ { Y (ω ⊕ δ) }. (4)

Here φ(δ) is a feature vector and α is a vector of deformation parameters. Deformation schemas
can be used to define deformable models. We define φ(δ) = (dx, dy, dx2

, dy
2) so that deformation

scores are quadratic functions of the displacements.

The parameters of our models are defined by a weight vector w with entries for the score of each
structure schema, the deformation parameters of each deformation schema and the filter coefficients
associated with each terminal. Then score(T ) = w · Φ(T ), where Φ(T ) is the sum of (sparse)
feature vectors associated with each placed terminal and production in T .

2.1 A grammar model for detecting people

Each component in the person model learned by the voc-release4 system [12] is tuned to detect
people under a prototypical visibility pattern. Based on this observation we designed, by hand, the
structure of a grammar that models visibility by using structural variability and optional parts. For
clarity, we begin by describing a shallow model (Figure 1) that places all filters at the same resolution
in the feature map pyramid. After explaining this model, we describe a deeper model that includes
deformable subparts at higher resolutions.

Fine-grained occlusion Our grammar model has a start symbol Q that can be expanded using one
of six possible structure schemas. These choices model different degrees of visibility ranging from
heavy occlusion (only the head and shoulders are visible) to no occlusion at all.

Beyond modeling fine-grained occlusion patterns when compared to the mixture models from [7]
and [12], our grammar model is also richer in a number of ways. In Section 5 we show that each of
the following modeling choices improves detection performance.

3
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But don’t we need to mine through lots of hard “negative” examples?



Learn templates with simple statistical (de)correlation models

SVM Gaussian model

Hariharan, Malik, Ramanan ECCV 12
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Perhaps not...

But don’t we need to mine through lots of hard “negative” examples?
Discriminative Decorrelation for Clustering and Classification 7

(a) AP (b) Centered (c) LDA

Fig. 3. The performance (AP) of the LDA model and the centered model (LDA with-
out whitening) vis-a-vis a standard linear SVM on HOG features. We also show the
detectors for the centered model and the LDA model.

3 Pedestrian detection

HOG feature vectors were first described in detail in [1], where they were shown
to significantly outperform other competing features in the task of pedestrian de-
tection. This is a relatively easy detection task, since pedestrians don’t vary sig-
nificantly in pose. Our local implementation of the Dalal-Triggs detector achieves
an average precision (AP) of 79.66% on the INRIA dataset, outperforming the
original AP of 76.2% reported in Dalal’s thesis [18]. We think this difference is
due to our SVM solver, which implements multiple passes of data-mining for
hard negatives. We choose this task as our first test bed for WHO features.

We use our LDA model to train a detector and evaluate its performance.
Figure 3 shows our performance compared to that of a standard linear SVM on
HOG features. We achieve an AP of 75.10%. This is slightly lower than the SVM
performance, but nearly equivalent to the original performance of [18]. However,
note that compared to the SVM model, the LDA model is estimated only from a
few positive image patches and neither requires access to large pools of negative
images nor involves any costly bootstrapping steps. Given this overwhelmingly
reduced computation, this performance is impressive.

Constructing our LDA model from HOG feature vectors involves two steps,
i.e, subtracting µ0 (centering) and multiplying by Σ−1 (whitening). To tease
out the contribution of whitening, we also evaluate the performance when the
whitening step is removed. In other words, we consider the detector formed by
simply taking the mean of the centered positive feature vectors. We call this
the “centered model”, and its performance is indicated by the black curve in
Figure 3. It achieves an AP of less than 10%, indicating that whitening is crucial
to performance. We also show the detectors in Figure 3, and it can be clearly
seen that the LDA model does a better job of identifying the discriminative
contours (the characteristic shape of the head and shoulders) compared to simple
centering.
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(a) AP (b) Centered (c) LDA

Fig. 3. The performance (AP) of the LDA model and the centered model (LDA with-
out whitening) vis-a-vis a standard linear SVM on HOG features. We also show the
detectors for the centered model and the LDA model.

3 Pedestrian detection

HOG feature vectors were first described in detail in [1], where they were shown
to significantly outperform other competing features in the task of pedestrian de-
tection. This is a relatively easy detection task, since pedestrians don’t vary sig-
nificantly in pose. Our local implementation of the Dalal-Triggs detector achieves
an average precision (AP) of 79.66% on the INRIA dataset, outperforming the
original AP of 76.2% reported in Dalal’s thesis [18]. We think this difference is
due to our SVM solver, which implements multiple passes of data-mining for
hard negatives. We choose this task as our first test bed for WHO features.

We use our LDA model to train a detector and evaluate its performance.
Figure 3 shows our performance compared to that of a standard linear SVM on
HOG features. We achieve an AP of 75.10%. This is slightly lower than the SVM
performance, but nearly equivalent to the original performance of [18]. However,
note that compared to the SVM model, the LDA model is estimated only from a
few positive image patches and neither requires access to large pools of negative
images nor involves any costly bootstrapping steps. Given this overwhelmingly
reduced computation, this performance is impressive.

Constructing our LDA model from HOG feature vectors involves two steps,
i.e, subtracting µ0 (centering) and multiplying by Σ−1 (whitening). To tease
out the contribution of whitening, we also evaluate the performance when the
whitening step is removed. In other words, we consider the detector formed by
simply taking the mean of the centered positive feature vectors. We call this
the “centered model”, and its performance is indicated by the black curve in
Figure 3. It achieves an AP of less than 10%, indicating that whitening is crucial
to performance. We also show the detectors in Figure 3, and it can be clearly
seen that the LDA model does a better job of identifying the discriminative
contours (the characteristic shape of the head and shoulders) compared to simple
centering.
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Properties of spatial 
covariance matrix

1) Stationairy:

Can be efficiently encoded with a 
set of 36x36 matrices Sigi-j

cov(xi,xj) = cov(xi - xj)

Sig-2 Sig-1 Sigo Sig1 Sig2



Properties of spatial precision matrix
Inv(Sig) is sparse

Inv(Sig) > eps

Inv(Sig) < -eps

Inv(Sig)  subtracts correlated gradients (at neighboring orientations and windows)
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Fig. 2.We visualize correlations between 9 orientation features in horizontally-adjacent
HOG cells as concatenated set of 9 × 9 matrices. Light pixels are positive while dark
pixels are negative. We plot the covariance and precision matrix on the left, and the
positive and negative values of the precision matrix on the right. Multiplying a HOG
vector with Σ−1 decorrelates it, subtracting off gradient measurements from adjacent
orientations and locations. The sparsity pattern of Σ−1 suggests that one needs to
decorrelate features only a few cells away, indicating that gradients maybe well-modeled
by a low-order spatial Markov model.

autocorrelation function [14]:

Σ(ij),(lk) = Γ(i−l),(j−k) = E[xuvx
T
(u+i−l),(v+j−k)] (1)

where the expectation is over cell locations (u, v) and gradient features x. In
other words, we assume that Σ(ij),(kl) depends only on the relative offsets (i−k)
and (j− l). Thus instead of estimating an N0d×N0d matrix Σ, we only have to
estimate the matrices Γs,t for every offset (s, t). For a spatial window with N0

cells, there exists only N0 distinct relative offsets. Thus we only need to estimate
N0d parameters.

We now estimate µ and the matrices Γs,t from all subwindows extracted
from a large set of unlabeled, 10,000 natural images (the PASCAL VOC 2010
dataset). This computation can be done once and for all, and the resulting µ

and Γ stored. Then, given a new object category, µ0 can be reconstructed by
replicating µ over all the cells in the window and Σ can be reconstructed from
Γ using (1).

Regularization: Even given this large training set and ourO(N) parametriza-
tion, we found Σ to be low-rank and non-invertible. This implies that it would
be even more difficult to learn a separate covariance matrix for each positive
class because we have much fewer positive examples, further motivating a single-
covariance assumption. In general, it is difficult to learn high-dimensional covari-
ance matrices [14]. For typical-size N values, Σ can grow to a 10, 000× 10, 000
matrix. One solution is to enforce conditional independence assumptions with a
Gaussian Markov random field; we discuss this further below. In practice, we reg-
ularized the sample covariance by adding a small value (λ = .01) to its diagonal,
corresponding to an isotropic prior on Σ.

2.2 Properties of the covariance matrix

WHO: We define a whitened histograms of orientations (WHO) descriptor as
x̂ = Σ−1/2(x − µ0). The transformed feature vector x̂ then has an isotropic
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1. A gut check
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Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

fβ(x) = max
z∈Z(x)

β · Φ(x, z). (1)

Here β is a vector of model parameters, z are latent values, and Φ(x, z) is a feature vector.

In the case of one of our star models β is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and Φ(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of
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Close to 0 percent performance!

PASCAL made it okay to be “honest” about the state-of-affairs

Address reviewer complaint: “Why doesn’t your approach do better?”



The data is “golden”

Our first attempt at PASCAL was a curve-based model
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Lesson: rather than starting with a model, start with the data



2. Detection does not immediately 
follow from classification

Image classification
Caltech 101/256

Object detection
Pascal



“One drives a car, not an engine”
Paraphrased from Hao Zhang

Pattern classification

within-class between-class
activation textures of objects spatial cueing

inhibition NMS mutual exclusion

global expected counts co-occurrence

Table 1. A taxonomy of interactions captured in our model.

Within a single object class, our model can favor typical spa-

tial layouts of objects (people often stand in crowds) while di-

rectly learning how to inhibit overlapping detections in such cases

(NMS). Our model also captures long-range interactions between

objects, such as the constraint that there exists at most one object

instance (counting). Analogous interactions exist between object

classes, including typical spatial relations between objects (bottles

sit on tables), mutual exclusion (dog and cat detectors should not

respond to the same image region), and co-occurrence (couches

and cars do not commonly co-occur).

tion which is not readily available from single image. As an

extreme example, studies of proxemics [10], the body spac-

ing and pose of people as they interact, shows that physical

spacing between people depends in complicated ways on

their “social distance”. While such complex interactions are

difficult to encode, we argue there does exist useful infor-

mation that is being ignored by current ad-hoc approaches

to NMS.

NMS is generally described in terms of intra-class in-

hibition, but can be generalized to suppression of overlap-

ping detections between different classes. We refer to this

more general constraint, that two objects cannot occupy the

same 3D volume at the same time, as mutual exclusion. As

seen in a 2D image projection, the exact nature of this con-

straint depends on the object classes. Fig.2(right) shows

an example of ground-truth labelings in the PASCAL VOC

dataset in which strict mutual-exclusion would produce sub-

optimal performance.

Object detections can also serve to enhance rather than

inhibit other detections within a scene. This has been an

area of active research in object recognition over the last

few years [18, 15, 9, 11, 12]. For example, different ob-

ject classes may be likely to co-occur in a particular spa-

tial layout. People ride on bikes, bottles rest on tables, and

so on. In contextual cueing, a confident detection of one

object (a bike) provides evidence that increases the likeli-

hood of detecting another object (a person above the bike).

Contextual cueing can also occur within an object category,

e.g., a crowd of pedestrians reinforcing each other’s detec-

tion responses. An extreme example of this phenomena is

near-regular texture in which the spatial locations of nearly

identical elements provides a strong prior on the expected

locations of additional elements, lowering their detection

threshold [14].

In Table 1 we outline a simplified taxonomy of different

types of object-object interactions, both positive and nega-

tive, within and between classes. The contribution of this

paper is a single model that incorporates all interactions

Non−Maxima Suppression Mutual Exclusion

Figure 2. Our novel contributions include the ability to learn in-

hibitory intra-class constraints (NMS) and inhibitory inter-class

constraints (Mutual Exclusion) in a single unified model along

with contextual cuing and spatial co-occurrence. Naive methods

for NMS or mutual exclusion may fail for objects that tend to

overlap themselves (left) and other objects (right). In contrast,

our framework learns how best to enforce such constraints from

training data. We formulate the tasks of NMS and Mutual Exclu-

sion using the language of structured prediction. This allows us

to compute an optimal model by minimizing a convex objective

function.

from Table 1 through the framework of structured predic-

tion. Rather than returning a binary label for a each image

window, our model simultaneously predicts a set of detec-

tions for multiple objects from multiple classes over the en-

tire image. Given training images with ground-truth object

locations, we show how to formulate parameter estimation

as a convex max-margin learning problem. We employ cut-

ting plane algorithms to efficiently learn globally optimal

parameters from thousands of training images.

In the sections that follow we formulate the structured

output model in detail, describe how to perform inference

and learning, and detail the optimization procedures used

to efficiently learn parameters. We show state-of-the-art re-

sults on the PASCAL 2007 VOC benchmark[6], indicating

the benefits of learning a global model that encapsulates the

layout statistics of multiple objects classes in real images.

We conclude with a discussion of related work and future

directions.

2. Model
We describe a model for capturing interactions across

a family of object detectors. To do so, we will explicitly

represent an image as a collection of overlapping windows

at various scales. The location of the ith window is given

by its center and scale, written as li = (x, y, s). The col-

lection of N windows are precisely the regions scored by

a scanning-window detector. Write xi for the features ex-

tracted from window i, for example, a histogram of gradient

features [5]. The entire image can then be represented as the

collection of feature vectors X = {xi : i = 1 . . . N}
Assume we have K object models. We write yi ∈

{0 . . . K} for the label of the ith window, where the 0 la-

bel designates the background. Let Y = {yi : i = 1 . . . N}
be the entire label vector for the set of all sub-windows in

an image. We define the score of labeling image X with

Nuisance issues
1) Positives are not aligned perfectly (search over coordinate frames - 
translations, euclidean, affine?)   
2) High imbalanced class distributions (“infinite” set of negatives)
2) NMS for overlapping detections (smooth response functions?)

Object recognition in cluttered scenes



Benchmark evaluation - Dollar, Wojek, 
Schiele, Perona CVPR 09
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(a) INRIA per-window results.
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VJ  (0.42)
HOG  (0.21)
FtrMine  (0.31)
Shapelet  (0.50)
MultiFtr  (0.15)
LatSvm  (0.19)
HikSvm  (0.26)
VJ−OpenCv  (0.63)
Shapelet−orig  (0.85)

(b) INRIA per-image results.

Figure 8. Results on the INRIA datasets (each algorithm is described in
more detail in Sec. 4). The per-window results, when available, are repro-
duced from the original publications (the VJ curve is extracted from [5]).
Typically results are reported on cropped positives, but the INRIA dataset
also contains full images with the same pedestrians but within the origi-
nal context. We computed the per-image results using the 288 full images
(each containing at least one pedestrian) and the methodology described
in Sec. 3.1. Note the reordering of the classification performance between
the per-window and per-image results.

a per-window detector is densely scanned across an im-
age and nearby detections merged, e.g. using non maximal
suppression (NMS). Instead, Dalal & Triggs suggest eval-
uating a detector by classifying cropped windows centered
on pedestrians against windows sampled at a fixed density
from images without pedestrians, thus avoiding NMS or
other post processing. The typical assumption is that better
per-window scores will lead to better performance on entire
images; however, in practice per-window performance can
fail to predict per-image performance (see Fig. 8).

There may be a number of explanations. Per-window
evaluation does not measure errors caused by detections at
incorrect scales or positions or arising from false detections
on body parts, nor does it take into account the effect of
NMS (which can reduce false positives at varying rates for
different methods). Detectors may require different sam-
pling schemes [36], particularly those that are somewhat in-
variant to changes in position and scale; furthermore, there
can be complex interactions between sampling density and
NMS. Together, these factors make evaluating a classifier
independently of the overall detection scheme difficult.

Of course, not all detection systems are based on slid-
ing windows [19, 17], and per-window evaluation of such
systems is impossible. Perhaps the biggest pitfall of the
per-window scheme pertains to use of cropped positives
and uncropped negatives for training and testing: classi-
fiers may exploit window boundary effects as discrimina-
tive features leading to good per-window performance but
poor per-image performance. We observed this in two of
the algorithms evaluated [30, 21] 2.

2Both groups have acknowledged this. E.g., see the advisory posted
at Mori’s website: www.cs.sfu.ca/˜mori/research/papers/
sabzmeydani_shapelet_cvpr07.html. For both algorithms we
evaluate updated, corrected versions.

3.1. Per-image evaluation
We perform single frame evaluation using a modified

version of the scheme laid out in the PASCAL object de-
tection challenges [28]. A detection system needs to take in
an image and return a BB and a score or confidence for each
detection. The system should perform multiscale detection
and any necessary NMS or other post processing. Evalua-
tion is performed on the final generated list of detected BBs.

A detected BB (BBdt) and a ground truth BB (BBgt)
form a potential match if their areas overlap sufficiently.
Specifically, we employ the PASCAL measure, which states
that the area of overlap a0 must exceed 50%:

ao =
area(BBdt ∩BBgt)
area(BBdt ∪BBgt)

> 0.5 (1)

The threshold of 50% is arbitrary but reasonable.
Each BBdt and BBgt may be matched at most once.

We resolve any assignment ambiguity by matching detec-
tions with highest confidence first. In rare cases this assign-
ment may be suboptimal, especially in crowded scenes [32],
but in practice the effect should be negligible. Unmatched
BBdt count as false positives and unmatched BBgt as false
negatives. To compare methods we plot miss rate against
false positives per-image by varying the threshold on detec-
tion confidence. This is preferred to precision recall curves
for certain tasks, e.g. automotive applications, as typically
there is an upper limit on the acceptable false positives per-
image rate independent of pedestrian density.

To evaluate performance on different subsets of the
ground truth, we introduce the notion of ignore regions.
Ground truth BBs selected to be ignored, denoted using
BBig , need not be matched, however, matches are not con-
sidered mistakes either. E.g., to evaluate performance on
unoccluded pedestrians, we set all BBs that contain oc-
cluded pedestrians to ignore. Matching proceeds as before,
except BBdt matched to BBig do not count as true posi-
tives, and unmatched BBig do not count as a false nega-
tives (matches to BBgt are therefore preferred). Note that
setting a BB to ignore is not the same as removing that BB
from the ground truth; in the latter case detections in the
ignore regions would count as false positives.

Four types of ground truth are always set to ignore:
any BBgt under 20 pixels high or near image borders (to
avoid boundary effects), containing a ‘Person?’ (difficult
or ambiguous cases), or containing ‘People’. In addition,
each ‘People’ BB is broken down into multiple overlapping
BBig , each having the same height as the ‘People’ BB. De-
tections in these regions do not affect performance.

We conclude by listing additional details. Some detec-
tors output BBs with padding around the pedestrian (e.g.
HOG outputs 128 × 64 BBs around 96 pixel tall people),
such BBs are cropped appropriately. Methods usually de-
tect pedestrians at some minimum size, to coax smaller de-
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VJ  (0.48)
HOG  (0.23)
FtrMine  (0.34)
Shapelet  (0.50)
MultiFtr  (0.16)
LatSvm−V1  (0.17)
HikSvm  (0.24)
VJ−OpenCv  (0.53)
Shapelet−orig  (0.90)
LatSvm−V2  (0.10)

Over half of DalalTriggs++ papers are worse than 
DalalTriggs when used as detectors on real images

Classification results Detection results



Large-scale learning

Figure 9. Results on test images from various datasets. For each pair of rows, the top row displays results from the original window-based

detector. The bottom row shows detections obtained with a segmentation-verification step. Since we compute an explicit segmentation, we

visualize that as well. The green boxes denote true positive detections, while the red boxes denote false positives. The top pair of rows

show results from the LabelMe face dataset. The second and third rows show results from Pascal VOC2006 dataset (for cars and people,

respectively). The forth row shows results from the INRIAPerson dataset.

(One can solve problems that are too big to fit in memory)
(hard-negative mining different for SVMs vs Boosting....)

What do negative weights mean?

(w+ - w-)x > 0

w+ > w-x

Complete system should compete pedestrian/pillar/doorway models

Discriminative models come equipped with own bg

(avoid firing on doorways by penalizing vertical edges)

>

wx > 0

pedestrian 
model

pedestrian 
background
model

SVMs are attractive because they generate sparse learning problems

Our test set distribution is highly imbalanced; so should be the training set
(hundreds of positives, hundreds of millions of negatives)

Generative models seem to deal better with imbalanced problems and noisy data
(success of LDA?)



Takeo Kanade’s 3 most 
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Takeo Kanade’s 3 most 
important vision problems?

1. Alignment
2. Alignment
3. Alignment
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Abstract
Active Appearance Models (AAMs) typically only use

50-100 mesh vertices because they are usually constructed

from a set of training images with the vertices hand-labeled

on them. In this paper, we propose an algorithm to increase

the density of an AAM. Our algorithm operates by itera-

tively building the AAM, refitting the AAM to the training

data, and refining the AAM. We compare our algorithm with

the state of the art in optical flow algorithms and find it to be

significantly more accurate. We also show that dense AAMs

can be fit more robustly than sparse ones. Finally, we show

how our algorithm can be used to construct AAMs auto-

matically, starting with a single affine model that is subse-

quently refined to model non-planarity and non-rigidity.

1. Introduction
Active Appearance Models (AAMs) [8] are deformable

models of the human face. AAMs have been used success-

fully in a wide variety of applications from head pose esti-

mation, face recogntion, and expression recognition [16], to

lip-reading [19] and gaze estimation [14].

The triangulated mesh in an AAM typically only has

around 50-100 vertices because AAMs are usually con-

structed from a collection of training images with the AAM

mesh hand-labeled [8] on them. Besides the fact that hand-

labeling is laborious, it is very difficult to accurately label

corresponding points in largely textureless regions such as

the cheeks. In practice, AAM meshes are best defined on

the few facial landmarks that are easy to locate.

In this paper we propose an algorithm to increase the

density of an AAM, initially assuming a sparse AAM has

been constructed in the usual manner [8]. On the highest

level, our algorithm iterates 3 steps: (1) building the AAM,

(2) refitting the AAM to the training images thereby updat-

ing the training meshes, and (3) refining the AAM.

The third of these steps is divided into three subparts.

(3a) Consists of adding more vertices to increase the mesh

density. (3b) Refines the mesh connectivity using image-

consistent triangulation [20]. Even when combined, how-

ever, (3a) and (3b) are insufficient to build a more accu-

∗
Research conducted at Carnegie Mellon University.
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Final Dense Models
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Iterate

Figure 1. An overview of our algorithm. The algorithm is ini-

tialized using a set of sparse hand-labeled mesh points. The al-

gorithm then iteratively: (1) builds an AAM, (2) refits it to the

training images, and (3) refines the AAM. AAM refinement is

split into three steps: (3a) the mesh is subdivided to add ver-

tices, (3b) the mesh connectivity is refined using image-consistent

re-triangulation [20], and (3c) the AAM shape modes and cor-

responding mesh vertex locations are optimized to minimize the

model reconstruction error.

rate AAM. The piecewise affine warps in an AAM can be

thought of as modeling 3D planes in the world. Since nei-

ther steps (3a) nor (3b) change the locations of the original

sparse mesh in the training data, the implicit 3D shape and

motion of these vertices is not changed. The main insight

in our algorithm is to augment (3a) and (3b) with step (3c)

which refines the AAM shape modes and the corresponding

mesh vertex locations in the training data to minimize the

model reconstruction error in a similar manner to [3]. This

optimization allows the implicit 3D model to change shape

and move differently; e.g. the cheeks to protrude, etc.

As the AAM is refined, our algorithm builds an increas-

ingly accurate model of appearance variation effects such

as illumination variation and the appearance and disappear-

ance of facial structures such as eyes and teeth. In steps (2)

1



3. Focused community on 
understanding spatial layout

Caltech 101/256 PASCAL VOC



Person Layout

Difficult to score (50% overlap too strict?)
Difficult to attempt (heavy occlusion / truncation)



Claim: alignment is what separates 
vision from pattern classication
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Can a deep belief net output the latter?
If so, then I think its reasoning about shape (which is good!)



“Fine-grain” shape estimation
Shape gives us a way to define an extremely large set of categories with shared structure 

gymnastics cricket forehand



“Fine-grain viewpoint” 
= 3D viewpoint estimation



Recall the recognition landscape @ 2005

Structureless

Learned model
fw(x) = w · Φ(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

Rigid

No reasoning about shape
“Parts” had fallen out of favor
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(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

fβ(x) = max
z∈Z(x)

β · Φ(x, z). (1)

Here β is a vector of model parameters, z are latent values, and Φ(x, z) is a feature vector.

In the case of one of our star models β is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and Φ(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT
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PASCAL VOC was vital to putting parts, 
localization, and “shape” back into the discussion



Common criticisms of PASCAL



1. It encouraged uniformity of thought



1. It encouraged uniformity of thought

I agree with this one

Soln? See Hoeim et al ECCV12

We already collect special purpose datasets to explore a particular phenomena (scale 
changes, extreme poses). Why not use a single annotated dataset?



2. It has stifled progress

“My method can’t beat the best numbers; I can’t publish”



2. It has stifled progress

a. It should be hard to do good research (9/10 ideas, at least for me, don’t work)

b. The onus is us as researchers to both have a good idea and communicate it. Empirical 
results are one way to communicate.  There are other creative ways; e.g., attributes
(introduce problem and create a dataset).

I don’t agree with this

c. See previous soln (more detailed benchmarking)

“My method can’t beat the best numbers; I can’t publish”



3. It encourages incremental research



3. It encourages incremental research

I don’t really agree

Are mixture models incremental
 (we originally thought so) ?

Is feature engineering incremental 
(HOG+LBP+...)?

Are multiscale models incremental?

The original DPM paper (CVPR08) was 
dinged for being incremental



Outline

I. Why do part models work?

II. A retrospective on PASCAL

III. A wishlist for PASCAL 2.0



Standard wishlist

More categories, denser labels, etc...

“Hyper annotation”



 

1  

 
 

1. Statement of Work  
Our objective is to develop robust and large scale computer vision systems that are capable of  
   (1) Understanding objects, scenes and events from images/videos in uncertain environments;   
   (2) Reasoning about the functions and roles of objects, the intents of the agents in the scenes; 
   (3) Predicting the outcomes of an unfolding events; and  
   (4) Giving meaningful answers to user queries: "who," "what," "when," "where," and "why".    
   We target three tasks of significant interest to DoD missions:  (a) Video surveillance systems 
with ground and aerial sensors that monitor human/vehicle activities, analyze their intents and 
goals, and predict unfolding events; (b) Autonomous robots that are capable of reasoning and 
planning in uncertain environments; (c) Information gathering,  image/video search and retrieval 
systems that can convert the extracted image/video contents to narrative text description, 
enabling intuitive user interfaces for querying and organizing large image and video databases. 
 
 Our work will focus on four main activities: (1) Collecting and annotating large scale datasets 
for learning and evaluation. Organized in taxonomies, the dataset will cover a significant fraction 
of all named visual object, scene, and event categories. (2) Representing the enormous amount of 
common human knowledge about objects, scenes and events at multiple scales of temporal and 
semantic resolutions within a probabilistic framework; and building the knowledge base through 
off-line/on-line learning, interpolative and extrapolative generalizations, and meta-knowledge 
reasoning. (3) Building a unifying statistical theory for learning visual knowledge from both the 
data-laden regime at lower semantic levels and the data-scarce regime at higher semantic levels; 
(4) Developing a synergistic and scalable inference engine with syntactic image parsing and 
semantic image understanding, which can compute, propagate and preserve the intrinsic 
uncertainty in such inferences and address variability induced by 3D and illumination.  

Figure 1. Example of image understanding.  Analysis of the image (top-left) produces a parse graph
(right) representing hierarchically objects, contextual relations, and semantic associations (in italic orange
font) for attributes, functions, roles, and intents. The parse graph maybe converted to a description in 
natural language (bottom-left).  
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“Lotus hill”-style annotation

Let’s set our sights a bit more modest



Getting rid of bounding boxes



Getting rid of bounding boxes
Combine detection and segmentation

12

Fig. 9. We show an example output of our system on the image from the top-left using the true positive

detections on the bottom-left. Our system produces class labels for each pixel, show on the top-right. This

is the output scored by the PASCAL segmentation benchmark. Our system can also return multi-class instance
labels z, as shown in the bottom-right image. Moreover, due to our layered representation, we can explicitly

reason about the spatial layout of occluded regions of objects. We show the binary segmentation labels b on the

three right images, where images are ordered from back to front. Note that our system correctly estimates the

depth order of the three dogs as well as inferring spatial extent of occluded parts of the dogs.

Instance benchmark on PASCAL 2010 Validation with verified, overlapping detections
¬part ¬color ¬superpixel ¬order Worst order Best order Our model

background 81.9 79.5 81.6 82.8 82.5 83.0 82.8
aeroplane 68.8 73.9 61.8 75.9 75.9 75.9 75.9
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Getting rid of bounding boxes
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Instance-level semantic segmentation

-Define candidate segment to be a “good” match if intersection/union > .5
-Evaluation criteria is no longer bounding-box dependent (useful for articulation)
-If desired, one could require a “globally-consistent” interpretation of an image

-Assume dogs & cats are confused with one another. One can artificially 
increase recall of both detectors by returning overlapping detections

-Force detectors to pick an precision-recall operating point
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Fig. 11. We analyze our system on the same
dataset as Figure 8, but using our new precision-recall,
instance-based, scoring criteria (accprec and accrec).
We plot isocontours of constant F1-score, the har-
monic mean of precision and recall.

traditionally disparate evaluation criteria for object
detection and segmentation. Evaluating our new cri-
teria on benchmark data, we demonstrate that our
system can fairly reliably segment individual object
instances.
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Fig. 13. We show example results of our detection-based layered segmentation algorithm on the 2010 PASCAL
data. In the middle-row, we show pixel class segmentations using the same color conventions as Figure 12.
In the bottom-row, we show object instance segmentations (using an arbitrary color scheme). We see that the
instance-based segmentations are often a richer pixel-based description of the image, and also reveal some
inconsistencies hidden in the class segmentations (e.g., the image on the left is mistakenly interpreted as 4
cars).
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Fig. 5. We show detection results obtained without any manual annotation of test
images. We follow the notational conventions of Fig. 1, including open circles to denote
occluded parts. Each row shows the N best detections for a single action model (denoted
by the row’s label). Our compositional models are able to capture large changes in
viewpoint and articulation that are present even within a single action class.

1. Localize person (+ interacting object)
2. Classify action of each detected instance

Action classification => Action recognition

Riding
Bike

3. Estimate pose of person (+ interacting object)



“Fine-grain viewpoint” 
= 3D viewpoint estimation

(and 3D shape?)



A look back

I. Why do part models work?

II. A retrospective on PASCAL

III. A wishlist for PASCAL 2.0

Extrapolation to unseen data

It was great - thanks!

More annotations and diagnostics


