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Theories of Visual Perception in
the 20 century

Behaviorism emphasized stimulus generalization and
association. Aligns well with machine learning approaches to

recognition.

Gestaltists emphasized perceptual organization- grouping and
figure/ground phenomena. Natural home for those who
regard reorganization of the stimulus — from pixels to entities-
as primary.

Gibson’s ecological optics emphasized “information pickup”
by a moving observer. Introduced optic flow and texture
gradients as powerful 3d cues. Consistent with a view that
there is enough information for 3d reconstruction of the
world.



Marr’s paradigm (1980)

Image

Ignored texture, grouping
factors

Primal Sketch

Shape-from-X didn’t work for
monocular cues

2.5D Sketch

Generalized cylinders not rich
enough as primitives

Part-based Models using Generalized Cylinders

Overall approach violated the principle of least commitment, that
Marr had himself advocated. Didn’t use probabilistic inference or learning.



Computer vision since 1990...

* Significant progress without an overarching
theory

 Has made considerable use of models drawn
from
— Geometry
— Statistics/Machine learning
— Optimization



Review

* Recognition

— 2D problems such as handwriting recognition, face
detection

— Partial progress on 3d object category recognition

e Reconstruction

— Feature matching + multiple view geometry has
led to city scale point cloud reconstructions

* Reorganization
— Graphcuts for interactive segmentation
— Bottom up boundaries and regions/superpixels
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102 classes, 31-300 images/class
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Caltech 101 classification results

(even better by combining cues..)

Number of training examples per class
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PASCAL Visual Object Challenge (Everingham et al)
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AP by Class

58.3% (motorbike) ... 16.2% (potted plant)
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Object Detection with Discriminatively Trained
Part Based Models

Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester and Deva Ramanan

Builds on Dalal & Triggs HOG detector (2005)



What did we learn from these

datasets?

* Lazebnik, Schmid & Ponce’s approach — Spatial
Pyramid Matching - was validated by Caltech 101.

* Felzenszwalb et al’s approach — Deformable Part
Models - was validated by the PASCAL VOC
challenge.

* There were other interesting and well-performing
approaches that came up in these competitions.
These two are noteworthy for their combination of
(relative) simplicity combined with good
performance.



Critigue of the State of the Art

* Performance is quite poor compared to that
at 2d recognition tasks and the needs of many
applications.

* Pose Estimation / Localization of parts or
keypoints is even worse. We can’t isolate
decent stick figures from radiance images,
making use of depth data necessary.

* Progress has slowed down. Variations of
HOG/Deformable part models dominate.



Precision /Recall - Motorbike
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Precision/Recall - Person

—NPR_DO_DC (51.6)

— UOCTTI_WL-SSVM_GRAMMAR (45.2)

— UOCTTILLSVM_MDPM (46.3)
NYUUCLA_HERARCHY (42.6)

— O)FORD_DPM_MK (42.3)
MISSOURI_TREE_MAX_POOLING (42.9)
MISSOURI_LCC_TREE_CODING (41.9)

— CMIC_SYNTHDPM (40.7)

—— BROOKES_STRUCT_DET_CRF (38.4)

NUS_CONTEXT_SVM 26.8)
UVA_SELSEARCH (20.4)
—— CORNELL_ISVM_VIEWPOINT (7.9)
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Recall saturates
around 70%



Progress 2010-2011
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Results on 2010 data improve for best 2011 methods for all but
one category (aeroplane)
* Caveats: More training data + re-use of test data
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Some categories are visually incoherent




We are not going to find chairs with HOG templates!




State of the Art in Reconstruction

* Multiple photographs * Range Sensors

. . HDL-G4E
P p o .s ' Kinect (PrimeSense) I
Credit: http://grail.cs. washington edu/rome/ 4 /'

Vel Lid
Agarwal et al (2010) elodyne Lidar

Critigue: Semantic Segmentation is needed to make
this more useful...



State of the Art in Reorganization

* [nteractive segmentation
using graph cuts

Rother, Kolmogorov & Blake (2004),
Boykov & Jolly (2001), Boykov, Veksler &
Zabih(2001)

Berkeley gPb edges &
regions
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Arbelaez et al (2009), Martin, Fowlkes,
Malik (2004), Shi & Malik (2000)

Critique: What is needed is fully automatic semantic segmentation



The Three R’ s of Vision

Recognition

AN

Reconstruction Reorganization

Each of the 6 directed arcs in this diagram is a useful direction
of information flow



Theory vs. Models

e Evolution is a theory; structure of DNA is a model.
Models have limited scope & are easily testable.
Theory is less precise but broader in scope.

* The value of this “theory” is

— Conceptual framework that points to most fruitful
research directions in vision

— Pedagogic value for students

— Someday, there may be a grand reunification, such as
what Maxwell brought to electromagnetism (we may

dream, can’t we?)
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Recognition

Shape as
feature

orphable
shape models

candidates

Reconstruction Reorganization




Problems with current recognition approaches

* Performance is quite poor compared to that
at 2d recognition tasks and the needs of many
applications.

* Pose Estimation / Localization of parts or
keypoints is even worse. We can’t isolate
decent stick figures from radiance images,
making use of depth data necessary.

* Progress has slowed down. Variations of
HOG/Deformable part models dominate.



Next steps in recognition

* Incorporate the “shape bias” known from child
development literature to improve generalization

— This requires monocular computation of shape, as once
posited in the 2.5D sketch, and distinguishing albedo and
illumination changes from geometric contours

 Top down templates should predict keypoint

locations and image support, not just information
about category

* Recognition and figure-ground inference need to co-
evolve. Occlusion is signal, not noise.



Next steps in recognition

* Incorporate the “shape bias” known from child

deveIOpment literature Barron & Malik, CVPR 2012

— This requires monocular computation of shape, as once
posited in the 2.5D sketch, and distinguishing albedo and
illumination changes from geometric contours

 Top down templates should predict keypoint

locations and image support, not just information
about category roselets: Bourdev & Malik, 2009 & later

* Recognition and figure-ground inference need to co-
evolve. Occlusion is signal, not noise.

Arbelaez et al, CVPR 2012



Reconstruction
Shape, Albedo & lllumination

Shape



Shape, Albedo, and Illumination

from Shading
98€c €0906¢

Jonathan Barron Jitendra Malik

UC Berkeley



Forward Opfics

Far

shape / depth



Forward Opfics

L

shape / depth illumination



Forward Opfics

Far

Near

(l, L) L

shape / depth log-shading image of Z and L ilumination



Forward Optics

Far

Near (7 L) L

log-shading image of Z and L illumination

A

log-albedo / log-reflectance



Forward Opfics

Far

S(Z,1) L

shape / depth log-shading image of Z and L ilumination

A I=A+S(Z,L)

log-albedo / log-reflectance Lambertian reflectance in log-intensity



Shape, Albedo, and lllumination from Shading
SAIFS (“safes”)

Far

?

L

illumination

I=A+S(Z,L)

log-albedo / log-reflectance Lambertian reflectance in log-intensity



Past Work

Shape from Shading

N NG
sty

Assume illumination and albedo are known, and solve for the shape

Intrinsic Images

7 ? - Q ? »

lgnore shape and illumination, and classify edges as either shading or albedo



Problem Formulation
ma)éi’rjlize P(A|Z,L)P(Z)
subject to I=A+S5(ZL)

Given a single image, search for the most likely explanation
(shape, albedo, and illumination) that together exactly reproduces that image.

Output:

Shape Albedo Shading lllumination



Some Explanations




Some Explanations




Some Explanations




Some Explanations
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Demol




What do we know about albedo?

1) Piecewise smooth at all scales and orientations
(variation is small and sparse)

2) Takes on a few discrete values everywhere in an image

(distribution is low-entropy)

Z4k 12 (HVQ A, k’ OﬂﬁbO'Z) — Ae Zlog (ZZGXP( )i40§(A7k)j)2)>

1=1 5=1



What do we know about shapes?

1) Piecewise smooth at all scales and orientations
(variation of mean curvature is small and sparse)

2) Face outwards at the occluding contour

3) Tend 1o be fronto-parallel
(slant tends to be small)
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Evaluation:Known Lighting

(a) Input Image &
[1lumination



Evaluation:Known Lighting

(a) Input Image & | (b) Ground Truth
[llumination




Evaluation:Known Lighting

(a) Input Image &
[llumination

(b) Ground Truth

(¢) Our Model



(a) Input Image &
Illumination

Evaluation:Known Lighting

(b) Ground Truth

(c) Our Model

(d) Retinex[5, 4] +
SFS

(e) Tappen et al.
2005[10] + SFS

(f) Barron & Malik
2010[1]

(g) J. Shen et al.
2010[8] + SES

(h) L. Shen & Yeo
2010[9] + SFS



Evaluation:Unknown Lighting




Evaluation:Real World Images




Evaluation:Real World Images




Evaluation:Real World Images




Evaluation:The Numbers

Algorithm Avg.

Flat Baseline 0.2004
Retinex + SFS 0.2009
Tappen et al. 2005 + SFS 0.1761
Barron & Malik 2011 0.1682
J. Shen et al. 2011 + SES 0.2376
Our Model (All Priors) 0.0856



Evaluation: Graphics!

Input Image



Evaluation: Graphics!

Modified 11umination

Input Image



Evaluation: Graphics!

Modified illumination Modified shape

Input Image



Evaluation: Graphics!

Modified shape

,:VPR 2012 ¢
2012 CVPR
Input Image /CVPR 2012

2012 CVPE
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Modified albedo



Evaluation: Graphics!

EVPR 2012 ¢
2012 CVPR
Input Image /CVPR 2012

2012 CVPE
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Modified albedo Modified orientation



Conclusions

Unification shape-from-shading, intrinsic images, and color
constancy

Solving the unified problem > Solving any sub-problem
Not a foy

Not (and can never be?) metrically accurate
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Reconstruction Reorganization




Semantic Segmentation using
Regions and Parts

P. Arbelaez, B. Hariharan, S. Gupfta,
C. Gu, L. Bourdev and J. Malik




This Work

Top-down Part/Object Detectors Bottom-up Region Segmentation

Cat Segmenter
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Figure 4.15 The “law of the whole” does not impose upon the parts. Behind the disk
there is a cross or a large square, but not the squares that are the elements of the regular
array.
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Region Generation

* Hierarchical segmentation tree based on contrast

* Hierarchy computed at three image resolutions

* Nodes of the trees are object candidates, and also pairs and triplets of adjacent
nodes

e Output: For each image, a set of ¥1000 object candidates (connected regions)

plane bicycle bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv |artic transp indoors| ¢

gPb-owt-ucm [+]| 59.3 329 70.3 51.1 61.3 51.2 57.6 74.3 58.0 68.6 67.4 67.5 643 485 53.6 535 726 71.2 55.1 73.1167.3 50.8 64.1 ]60.6
Our regions 76.7 41.6 84.0 74.2 77.2 75.8 74.9 85.2 69.6 79.1 82.9 824 759 69.6 744 704 80.3 83.2 76.5 85.1/80.2 69.9 78.1 |76.0




Results on PASCAL VOC

VOC (%) SRL UC3M
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How to think about Vision

* “Theory”

e Models

Feature Histograms
Support Vector machines
Randomized decision trees
Spectral partitioning

L1 minimization

Stochastic Grammars
Deep Learning

Markov Random Fields



Thanks!



