
The PASCAL Visual Object Classes Challenge

2005 Development Kit

Mark Everingham

August 31, 2005

1 Challenge

The goal of this challenge is to recognize objects from a number of visual object
classes in realistic scenes (i.e. not pre-segmented objects). There are four object
classes:

• motorbikes

• bicycles

• people

• cars

There are two tasks:

1.1 Classification task

For each of the four object classes predict the presence/absence of at least one
object of that class in a test image. The output from your system should be
a real-valued confidence of the object’s presence so that an ROC curve can be
drawn.

1.2 Detection task

For each of the four classes predict the bounding boxes of each object of that
class in a test image (if any). Each bounding box should be output with an
associated real-valued confidence of the detection so that a precision/recall curve
can be drawn. To be considered a correct detection, the area of overlap ao

between the predicted bounding box Bp and ground truth bounding box Bgt

must exceed 50% by the formula:

ao =
area(Bp ∩ Bgt)
area(Bp ∪ Bgt)

(1)

MATLAB code for computing this overlap measure is present in the example
code. Multiple detections of the same object in an image will be considered false
detections e.g. 5 detections of a single object is counted as 1 correct detection
and 4 false detections – it is the responsibility of the user’s system to filter
multiple detections from its output.

1

1.3 Image sets

There are five sets of images provided. These are provided in the “VOC2005
Dataset 1” and “VOC2005 Testset 2” databases. The image sets are to be used
both for the classification and detection tasks.

train: Training data

val: Validation data (suggested). The validation data may be used as addi-
tional training data (see below).

train+val: The union of train and val.

test1: First test set. This test set is taken from the same distribution of images
as the training and validation data, and is expected to provide an ‘easier’
challenge.

test2: Second test set. This test set has been freshly collected for the challenge.
It is not therefore expected to have the same distribution as the training
data, and should provide a ‘harder’ challenge.

1.4 Competitions

Eight competitions are defined according to the task, the choice of training
data: (i) taken from the VOC train+val data provided, or (ii) from any source
excluding the VOC {test1|test2} data provided; and the choice of test data:
(i) test1 (‘easier’) or (ii) test2 (’harder’):

No. Task Training data Test data
1 Classification train+val test1
2 Classification train+val test2
3 Classification not VOC test1 or test2 test1
4 Classification not VOC test1 or test2 test2
5 Detection train+val test1
6 Detection train+val test2
7 Detection not VOC test1 or test2 test1
8 Detection not VOC test1 or test2 test2

To emphasize, in competitions 3–4 and 7–8, any source of training data may
be used except the provided test data test1 or test2. Competitions 1–2 and
5–6 must use only the provided test data train and val.

Note that any annotation provided in the VOC train and val sets may
be used for training, for example bounding boxes, particular class labels e.g.
PAScarFrontal or PAScarSide, polygonal outlines where provided, etc.

For each competition, entrants may choose to tackle all, or any subset of
object classes, for example “cars only” or “motorbikes and cars”.

2 Development Kit Contents

The development kit is packaged in a single gzipped tar file containing code,
image lists specifying training/validation sets, and (this) documentation.

The images required for the challenge are provided in the “VOC2005 Dataset
1” and “VOC2005 Testset 2” databases available from the VOC database page.

2

3 Installation and Configuration

The simplest installation is achieved by placing the development kit and chal-
lenge databases to a single location. After untarring the development kit, down-
load the two challenge databases and untar into a subdirectory “VOCdata/”,
resulting in the following directory structure:

VOCdevkit/ % documentation and example code
VOCdevkit/PASCAL/ % PASCAL/VOC utility code
VOCdevkit/PASCAL/imgsets/ % image sets (internal use only)
VOCdevkit/VOCdata/ % VOC images and annotation
VOCdevkit/VOCdata/VOC2005_1/ % Dataset 1
VOCdevkit/VOCdata/VOC2005_2/ % Testset 2
VOCdevkit/results/ % directory for your results

If you set the current directory in MATLAB to the VOCdevkit directory
you should be able to run the example functions example classifier and
example detector.

If desired, you can store the code, images/annotation, and results in separate
directories, for example you might want to store the image data in a common
group location. To specify the locations of the image/annotation and results
directories, edit the VOCinit.m file, e.g.

% change this path to point to your copy of the PASCAL images
PASopts.imgdir=’/homes/group/VOCdata/’;

% change this path to a writable directory for your results
PASopts.resultsdir=’/homes/me/VOCresults/’;

Note that in developing your own code you need to include the VOCdevkit/PASCAL
directory in your MATLAB path, e.g.

>> addpath /homes/me/code/VOCdevkit/PASCAL

4 Example Code

Example implementations for both the classification and detection tasks are
provided. The aim of these implementations is solely to demonstrate use of the
code in the development kit. The code has been written in such a manner that
you should be able to incorporate your own classifier/detector by replacing just
a few lines of code.

4.1 Example Classifier Implementation

The file example classifier.m contains a complete implementation of the clas-
sification task. For each VOC object class a simple classifier is trained on the
train+val set; the classifier is then applied to the ‘easier’ test set test1 and an
ROC curve plotted. The classifier output and ROC curve is saved in the format
required for submitting results to PASCAL.

Incorporation of your own classifier code can be achieved by replacing the
definitions of the example train and example classify functions. Of course,
you are free to use whatever other methods may be appropriate, but results for
submission to PASCAL must be produced by calling the VOCroc function.

3

4.2 Example Detector Implementation

The file example detector.m contains a complete implementation of the de-
tection task. For each VOC object class a simple (and not very successful!)
detector is trained on the train+val set; the detector is then applied to the
‘easier’ test set test1, precision/recall and DET curves plotted. The curves are
saved in the format required for submitting results to PASCAL.

Incorporation of your own detector code can be achieved by replacing the
definitions of the example train and example detect functions. Of course,
you are free to use whatever other methods may be appropriate, but results for
submission to PASCAL must be produced by calling the VOCpr function.

5 Using the Development Kit

The development kit provides functions for loading annotation data related to
the VOC challenge and generating ROC, precision/recall, and DET curves for
submission to PASCAL.

5.1 VOCinit

The VOCinit script initializes a single structure PASopts which contains options
for the PASCAL functions including directories containing the PASCAL data,
options for the evaluation functions (not to be modified), and the list of object
classes for the VOC challenge.

The field VOCclass is a structure array listing the VOC object classes. Each
element has a field label which is the VOC label string for the class, and a
field PASlabels which is the list of PASCAL labels from which the VOC class
is derived e.g.

>> PASopts.VOCclass(1)

ans =

label: ’VOCmotorbikes’
PASlabels: {’PASmotorbike’ ’PASmotorbikeSide’}

The label field is used to identify results to the evaluation code and for sub-
mitting results to PASCAL, see below and the example code.

5.2 VOCreadimgset(PASopts,label,subset)

The VOCreadimgset function loads the annotation data associated with a partic-
ular image set i.e. the training/validation/test set for a particular VOC object
class. The argument label specifies the VOC class label e.g. ’VOCmotorbikes’
and the argument subset specifies the subset of data which should be one of
’train|val|train+val|test1|test2’. For example, to load the training set
for the VOCmotorbikes class, use:

>> imgset=VOCreadimgset(PASopts,’VOCmotorbikes’,’train’)

imgset =

4

label: ’VOCmotorbikes’
subset: ’train’
recs: [1x342 struct]

posinds: [1x107 double]
neginds: [1x235 double]

The returned value is a structure with the label and subset strings preserved.
The recs field is an array of PASCAL image annotation records. For conve-
nience, the posinds field lists the indices of ‘positive’ records which contain at
least one instance of the object class of interest (see below), and the neginds
field lists the corresponding ‘negative’ records in which no objects of interest
are present.

Each element of the recs field is a standard PASCAL image annotation
record (see the PASCAL annotation files for details) e.g.

>> imgset.recs(1)

ans =

imgname: ’Caltech/PNGImages/motorbikes_side/0002.png’
imgsize: [440 280 3]

database: ’The Caltech Database’
objects: [1x1 struct]
present: 1

For convenience, the additional present field indicates if an instance of the
object class of interest (e.g. VOCmotorbikes here) is present in the image. The
objects field contains a structure array containing annotation for each object
of interest present in the image (if any) e.g.

>> imgset.recs(1).objects

ans =

label: ’PASmotorbikeSide’
orglabel: ’motorbikes’

bbox: [11 13 431 270]
polygon: []

mask: ’’

Note that the only objects listed are instances of the object class of interest (e.g.
VOCmotorbikes here) i.e. recs(i).present=length(recs(i).objects)>0.

5.3 VOCroc(PASopts,imgset,confidence,draw)

The VOCroc function computes an ROC curve for the object classification task
in which the aim is to determine solely the presence of absence of an object class
in an image.

The imgset argument specifies the image set loaded using VOCreadimgset.
The draw argument can be set nonzero to draw the ROC curve on the current
figure.

5

The confidence argument specifies the output of the user’s classifier for the
image set imgset. It should contain one element per image with greater values
indicating greater confidence that an instance of the object class of interest is
present e.g. something like P (object present|image).

The return value from the function is a structure containing the vector of
confidence values input to the function and a vector of false positives fp and
true positives tp, with the identity of the class label and image set preserved
e.g.

>> roc=VOCroc(PASopts,valset,confidence,true)

roc =

label: ’VOCmotorbikes’
subset: ’val’

confidence: [342x1 double]
tp: [1x342 double]
fp: [1x342 double]

5.4 VOCsaveroc(PASopts,roc,expt)

The VOCsaveroc saves the ROC curve computed by VOCroc to a file in the
format required for submission to PASCAL e.g.

>> VOCsaveroc(PASopts,roc,’pascal_develtest’)

The expt argument specifies a string identifier for the experiment which the
user is free to choose. The output file is stored in the user’s specified results
directory (see VOCinit) and named automatically according to the experiment,
VOC class label and experiment.

5.5 VOCpr(PASopts,imgset,dets,draw)

The VOCpr function computes a precision/recall curve for the object detection
task in which the aim is to determine both the presence and bounding boxes of
instances of a particular object class in an image.

The imgset argument specifies the image set loaded using VOCreadimgset.
The draw argument can be set nonzero to draw the precision/recall curve on
the current figure.

The dets argument specifies the output of the user’s detector for the image
set imgset. It should be an array of structures with fields imgnum, confidence,
and bbox e.g.

>> dets

dets =

1x342 struct array with fields:
imgnum
confidence
bbox

6

The imgnum field specifies the index of the image in the image set imgset to
which the detection applies. The confidence field indicates confidence in the
detection, with greater values indicating greater confidence that the object is
present at the specified position e.g. something like P (object present|bbox).
The bbox field specifies the bounding box of the detection in the image (in
MATLAB image coordinates) as a vector of the form [xmin ymin xmax ymax]
(coordinates need not be integer valued). An example:

>> dets(1)

ans =

imgnum: 1
confidence: 3.9953

bbox: [32.6162 -4.2666 413.6433 229.2844]

The return value from the function is a structure containing a vector of
recall and corresponding precision values, with the identity of the class label
and image set preserved e.g.

>> pr=VOCpr(PASopts,valset,dets,true)

pr =

label: ’VOCmotorbikes’
subset: ’val’
recall: [342x1 double]

precision: [342x1 double]

5.6 VOCsavepr(PASopts,pr,expt)

The VOCsavepr saves the precision/recall curve computed by VOCpr to a file in
the format required for submission to PASCAL e.g.

>> VOCsavepr(PASopts,pr,’pascal_develtest’)

The expt argument specifies a string identifier for the experiment which the
user is free to choose. The output file is stored in the user’s specified results
directory (see VOCinit) and named automatically according to the experiment,
VOC class label and experiment.

5.7 VOCdet(PASopts,imgset,dets,draw)

The VOCdet function computes a Detection Error Tradeoff (DET) curve for the
object detection task in which the aim is to determine both the presence and
bounding boxes of instances of a particular object class in an image.

The imgset argument specifies the image set loaded using VOCreadimgset.
The draw argument can be set nonzero to draw the precision/recall curve on
the current figure.

The dets argument specifies the output of the user’s detector for the image
set imgset. It should be an array of structures with fields imgnum, confidence,
and bbox e.g.

7

>> dets

dets =

1x342 struct array with fields:
imgnum
confidence
bbox

The imgnum field specifies the index of the image in the image set imgset to
which the detection applies. The confidence field indicates confidence in the
detection, with greater values indicating greater confidence that the object is
present at the specified position e.g. something like P (object present|bbox).
The bbox field specifies the bounding box of the detection in the image (in
MATLAB image coordinates) as a vector of the form [xmin ymin xmax ymax]
(coordinates need not be integer valued). An example:

>> dets(1)

ans =

imgnum: 1
confidence: 3.9953

bbox: [32.6162 -4.2666 413.6433 229.2844]

The return value from the function is a structure containing a vector of false
positive and corresponding miss rate values, with the identity of the class label
and image set preserved e.g.

>> DET=VOCdet(PASopts,valset,dets,true)

DET =

label: ’VOCmotorbikes’
subset: ’val’

fp: [342x1 double]
mr: [342x1 double]

5.8 VOCsavedet(PASopts,pr,expt)

The VOCsavedet saves the DET curve computed by VOCdet to a file in the
format required for submission to PASCAL e.g.

>> VOCsavedet(PASopts,DET,’pascal_develtest’)

The expt argument specifies a string identifier for the experiment which the
user is free to choose. The output file is stored in the user’s specified results
directory (see VOCinit) and named automatically according to the experiment,
VOC class label and experiment.

8

