Object Detection using Histograms of Oriented Gradients

Navneet Dalal, Bill Triggs INRIA Rhône-Alpes Grenoble, France

Thanks to Matthijs Douze for volunteering to help with the experiments

7 May, 2006 Pascal VOC 2006 Workshop ECCV 2006, Graz, Austria

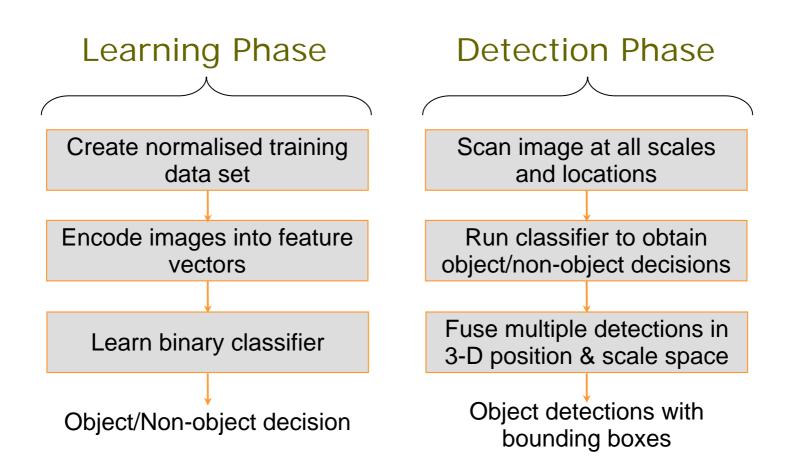
Talk Outline

- Current approaches
- Overall architecture
- Histogram of oriented gradient
 - Description of image encoding algorithm
- Multi-scale detection architecture
 - Fusion of detections at multiple scales and locations
- Key findings on Pascal VOC 2006
- Conclusions

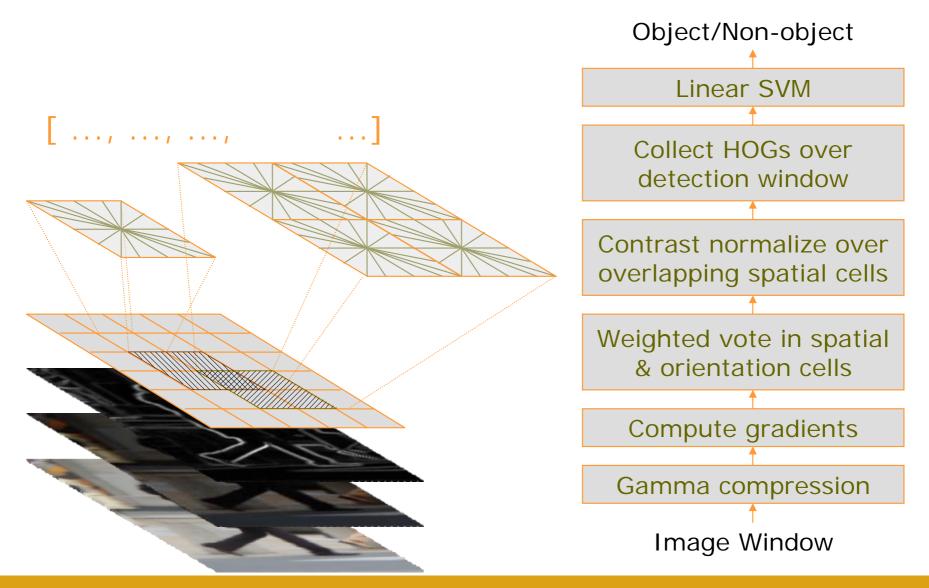
Motivation

- Current Approaches
 - Dense feature sets based approaches
 - Papageorgiou & Poggio, 2000; Viola & Jones, 2001
 - Template or image fragments based approaches
 - Gavrila & Philomen, 1999; Vidal-Naquet & Ullman, 2003
 - Models based on key points
 - Leibe et al, 2005; Fergus et al, 2003
- Our Approach
 - Focus on creating robust encoding of images
 - Linear SVM as classifier on normalized image windows, is reliable & fast
 - Moving window based detector with non-maximum suppression over scale space

Overall Architecture



Descriptor Processing Chain



HOG Descriptors

HOG: Histogram of Oriented Gradients

Parameters

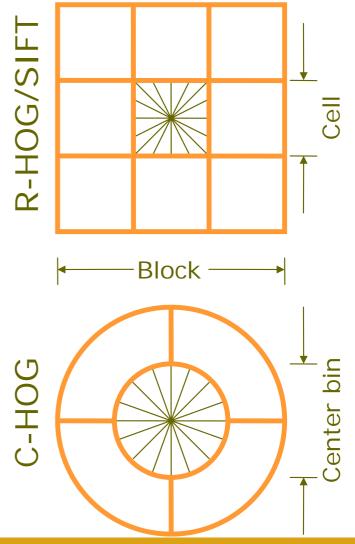
- Gradient scale
- Orientation bins
- Block overlap area

Schemes

- RGB or Lab, Color/grayspace
- Block normalization L2-hys, $v \leftarrow v / \sqrt{\|v\|_2^2 + \varepsilon}$

or

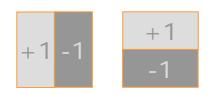
L1-sqrt,



 $\mathcal{E})$

Lessons on HOGs

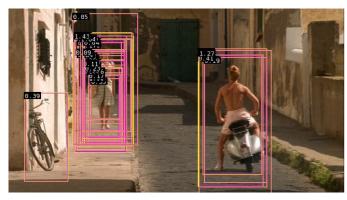
- No gradient smoothing, [1 0 -1] derivative mask
- Use gradient magnitude (no thresholding)
- Orientation voting into fine bins (20° wide bins)
- Spatial voting into coarser bins
- Strong local normalization
- Use overlapping blocks



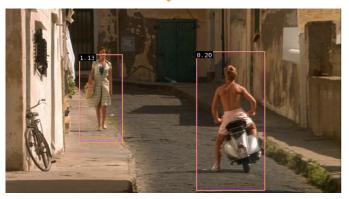
Fine grained features improve performance

- Have 1-2 order lower false positives than other descriptors
- ⊗ Slower than integral images of Viola & Jones, 2001

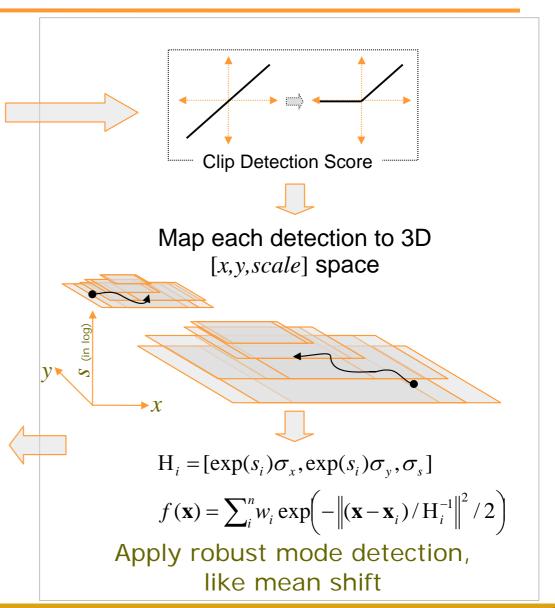
Multi-Scale Detection



After dense multi-scale scan of detection window



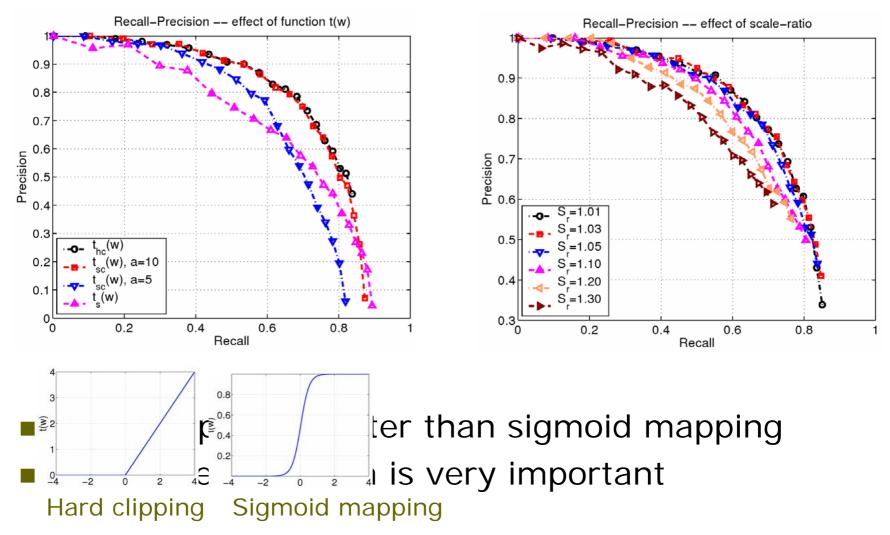
Final detections



Performance Evaluation

Transformation functions

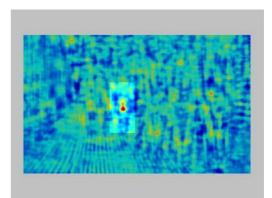
Scale-space pyramid steps



Effect of Smoothing

- Spatial smoothing proportional to window size performs best
- Relatively independent to smoothing across scales

Detector's normalized image window size

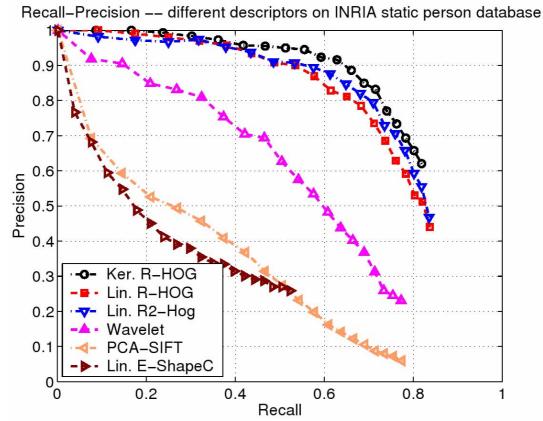


Detector's response at the given scale level

Overall robust non-maximum suppression is important

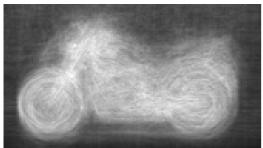
Overall Performance

Recall-precision on INRIA person database



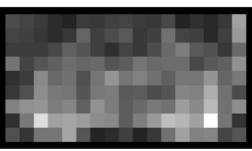
 R/C-HOG have 1-2 order lower false positives than other descriptors

Descriptor Cues: Motorbikes

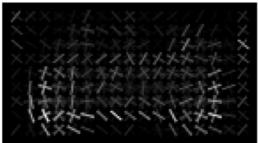


Average gradients

Input window



Weighted pos wts



Dominant pos orientations



Weighted neg wts

Dominant neg orientations

Detection Examples

Key Descriptor Parameters

Class	Window Size	Avg. Size	# of Orient- ation Bins	Orientat- ion Range	Gamma Compre- ssion	Normal- isation Method
Person	64×128	Height 96	9	0°-180°	\sqrt{RGB}	L2-Hys
Car	104×56	Height 48	18	0°-360°	\sqrt{RGB}	L1-Sqrt
Bus	120×80	Height 64	18	0°-360°	\sqrt{RGB}	L1-Sqrt
Motorbike	120×80	Width 112	18	0°-360°	\sqrt{RGB}	L1-Sqrt
Bicycle	104×64	Width 96	18	0°-360°	\sqrt{RGB}	L2-Hys
Cow	128×80	Width 56	18	0°-360°	\sqrt{RGB}	L2-Hys
Sheep	104×60	Height 56	18	0°-360°	\sqrt{RGB}	L2-Hys
Horse	128×80	Width 96	9	0°-180°	RGB	L1-Sqrt
Cat	96×56	Height 56	9	0°-180°	RGB	L1-Sqrt
Dog	96×56	Height 56	9	0°-180°	RGB	L1-Sqrt

Conclusions

Contributions

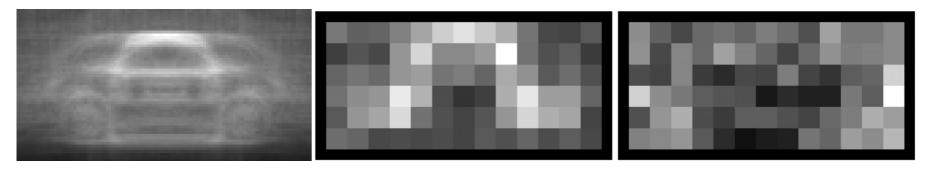
- Robust feature encoding for object detection
- Gives good performance for variety of object classes
- Real time detection is possible

Future Work

- Part based detector for handling partial occlusions
- Incorporate texture and color descriptors into the framework
- One single optimization phase based on AdaBoost to learn most relevant descriptors

Thank You

Descriptor Cues: Cars

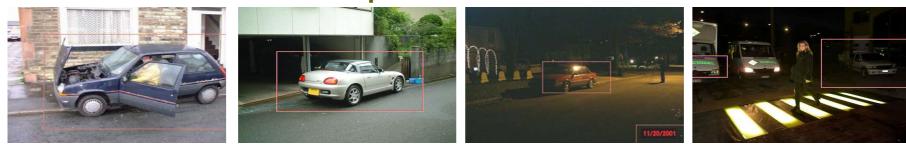


Average gradients

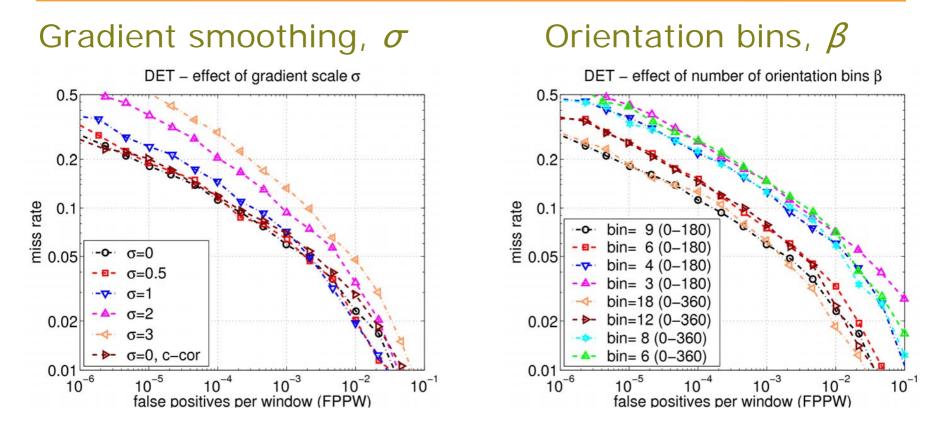
Weighted pos wts

Weighted neg wts

Detection Examples

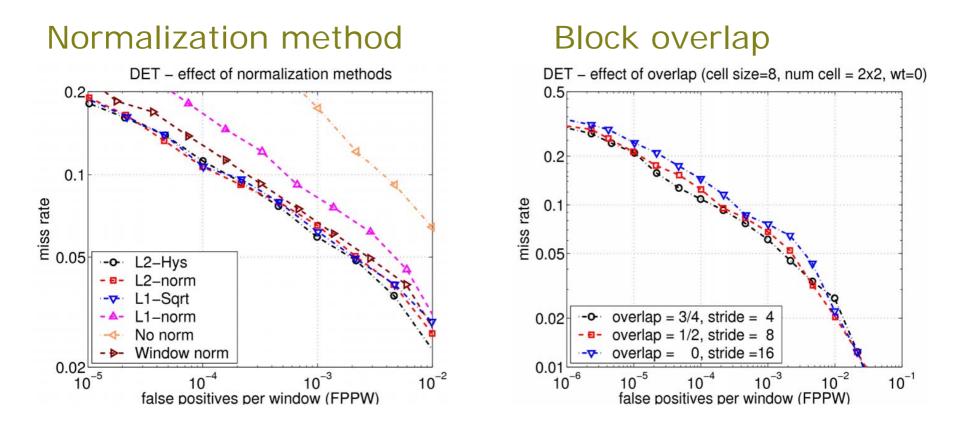


Effect of Parameters



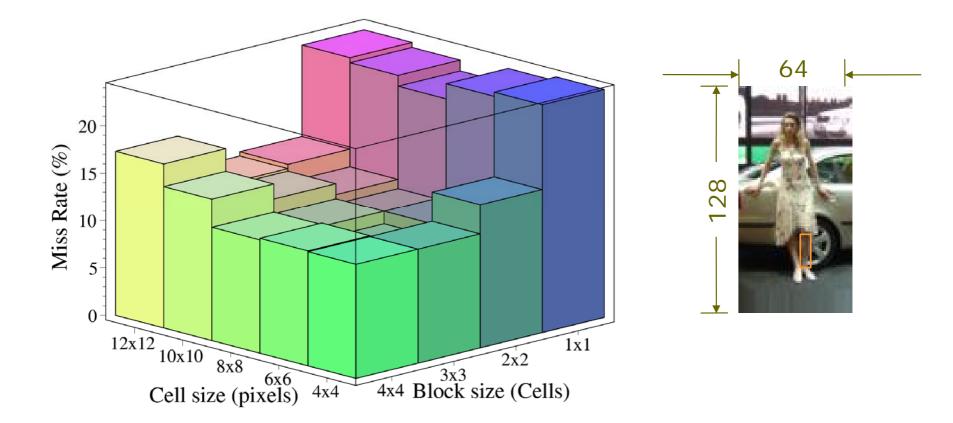
- Using simple smoothed gradients and many orientations helps!
- Gradient scale $3 \rightarrow 0 \Rightarrow$ false positives drop by 10 times
- Orientation bins $45^{\circ} \rightarrow 20^{\circ} \Rightarrow$ false positives drop by 10 times

... Continued



- Strong local normalization is essential
- Overlapping block increases performance, but descriptor size increases

Effect of Block and Cell Size



Trade off between need for local spatial invariance and need for finer spatial resolution

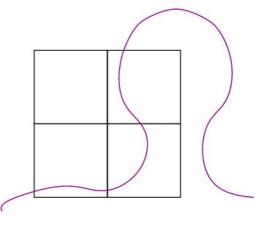
Descriptor Cues: Persons

Input example

Average gradients

Weighted pos wts

Weighted neg wts



Outside-in weights

- Most important cues are head, shoulder, leg silhouettes
- Vertical gradients inside a person are counted as negative
- Overlapping blocks just outside the contour are most important