Local Features and Kernels for Classification of Object Categories

J. Zhang --- QMUL UK (INRIA till July 2005)

with

M. Marszalek and C. Schmid --- INRIA France

S. Lazebnik and J. Ponce --- UIUC USA

Motivation

Why?

- Describe images, e.g. textures or categories, with sets of sparse features
- Handle object images under significant viewpoint changes
- Find better kernels

Resulting

Stronger robustness and higher accuracy

Better kernel evaluation

Outline

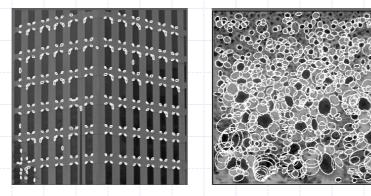
Bag of features approach

- Region extraction, description
- Signature/histogram
- Kernels and SVM

Implementation choice evaluation

- Detectors & descriptors, invariance, kernels
- Influence of backgrounds

Spatial bag of features


Spatial pyramid

Results on Pascal 06 validation data

Image Representation

Sparse: regions from interest points

- Harris-Laplace: H \rightarrow HS, HSR and HA
- − Laplacian: $L \rightarrow LS$, LSR and LA
- Invariance: S (scale), SR (scale and rotation), and A (affine)

Harris-Laplace

Laplacian

Dense: regions from points on a fixed grid
Multi-scale -- fixed grid (5000 points per image)

Description

SIFT (Lowe, IJCV 2004) and SPIN images (Lazebnik et al, PAMI 2005)

Image signature/Histogram

♦ Signature: cluster each image → $\{(u_i, w_i), i = 1, ..., m\}$

Earth Movers Distance (EMD) (Rubner et al. IJCV2000)

$$S1 = \{(u_i, w_i), i = 1, ..., m\} \text{ and } S2 = \{(u_i, w_i), i = 1, ..., n\}$$
$$D(S1, S2) = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} d_{i,j} f_{i,j}}{\sum_{i=1}^{m} \sum_{j=1}^{n} f_{i,j}}$$

 $d(i, j) \rightarrow$ is the ground truth distance; $f(i, j) \rightarrow$ is the flow

Visual words: cluster all training images

- Histogram-based distances
 - Euclidean distance

•
$$\chi^2$$
 distance $S1 = \{u_1, ..., u_m\}$ $S2 = \{w_1, ..., w_m\}$
 $D(S_1, S_2) = \frac{1}{2} \sum_{i=1}^{m} [(u_i - w_i)^2 / (u_i + w_i)]$

- histogram intersection
- any other histogram distances

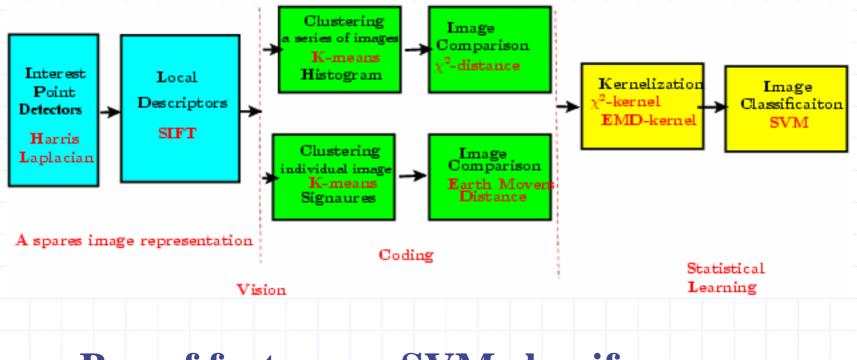
Kernel-based Classification

Kernelization:

- Traditional kernel : linear, RBF
- Extended Gaussian kernel

$$K(I_1, I_2) = \exp(-1/A * D)$$

• Resulting : EMD or χ^2 kernel


Combination:

- **Direct sum** $D = \sum D_i$
- A two-layer SVM classifier: SVM+ χ^2 kernel \rightarrow SVM + RBF kernel

Classification: SVM

- Binary SVM (Object prediction)
- Multi-Class SVM (multi-class classification)

Method Flow Chart

Bag of features + SVM classifer

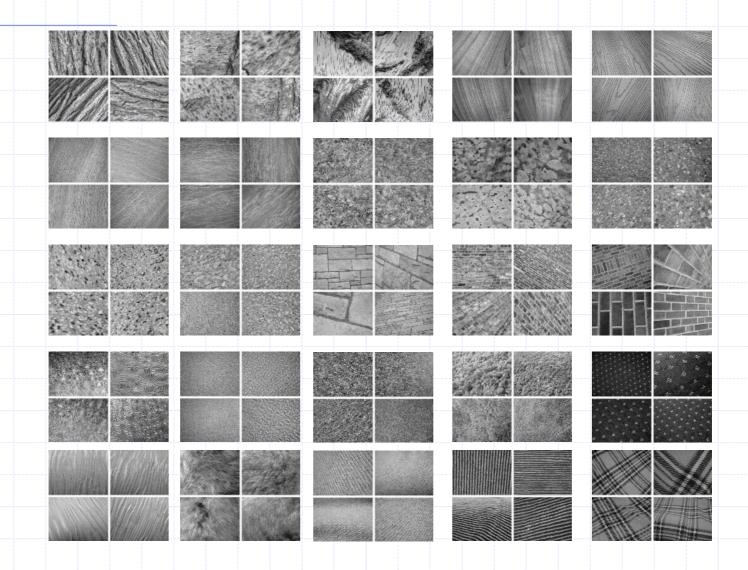
[Zhang, Marszalek, Lazebnik & Schmid, Workshop CVPR 2006]

Outline

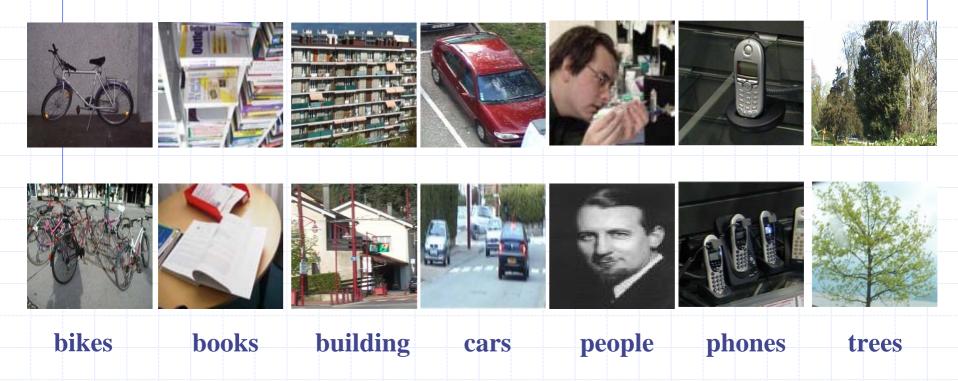
Bag of features approach

- Region extraction, description
- Signature/histogram
- Kernels and SVM

Implementation choice evaluation


- Detectors & descriptors, invariance, kernels
- Influence of backgrounds

Spatial bag of features


Spatial pyramid

UIUC texture : 25 classes, 40 samples each

Xerox7, 7categories, various background

Evaluation: Detectors and Descriptors

UIUCTex : 20 training images per class

Channels	SIFT	SPIN	SIFT+SPIN
HSR	97.1 ±0.6	93.9 ±1.1	97.4 ±0.6
LSR	97.7 ±0.6	93.9 ±1.0	98.2 ±0.6
HSR+LSR	98.0 ±0.5	96.2 ±0.8	98.3 ±0.5

Xerox7: 10 fold cross validation

Channels	SIFT	SPIN	SIFT+SPIN
HS	92.0 ±2.0	83.0 ±1.9	91.4 ±2.1
LS	93.9 ±1.5	88.6 ±2.0	94.3 ±0.9
HS+LS	94.7 ±1.2	89.5 ±1.4	94.3 ±1.1

- LS better than HS more points
- The combination of detectors is the best choice
- Lap with SIFT is acceptable with less computational cost

Evaluation: Invariance

		Sca	le Invariance		Scale and Rotation			Affine Invariance		
Datasets	n	HS	LS	HS+LS	HSR	LSR	HSR+LSR	НА	LA	HA+LA
UIUCTex	20	89.7±1.6	91.2±1.5	92.2±1.4	97.1±0.6	97.7±0.6	98.0±0.5	97.5±0.6	97.5±0.7	98.0±0.6
Xerox7	10 fold	92.0±2.0	93.9±1.5	94.7±1.2	88.1±2.1	92.4±1.7	92.2±2.3	88.2±2.2	91.3±2.1	91.4±1.8

Best invariance level depends on datasets

Scale invariance is often sufficient for object categories

Affine invariance is rarely an advantage

Evaluation: Kernels

Experimental setting: sig. size: 40 for EMD; number of clusters per class is 10 for χ^2 kernel

Datasets Training images per class	Spares representation								
		Vocabulary-H	Signature						
		Linear	Poly (n=2)	RBF	χ^2 kernel	EMD+KNN	EMD-kernel		
UIUCTex	20	97.0±0.6	84.8±1.6	97.3±0.7	98.1±0.6	95.0±0.8	97.7±0.6		
Xerox7	10 fold	79.8±3.0	70.9±2.4	86.2±2.2	89.2±2.1	59.4±4.1	92.4±1.7		

• EMD and χ^2 kernel gives the best/comparable results

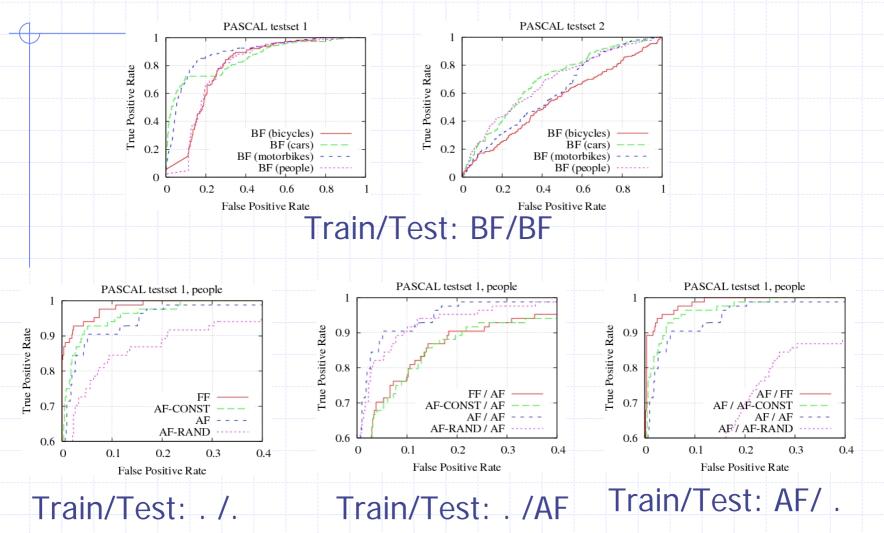
Higher vocabulary usually gives higher accuracy: x² gives 93% on Xerox7 when using 1000 instead of 70.

Comparison with state-of-the-art

Methods	Xerox7	CalTech6	Graz	Pascal05 Test 1	Pascal 05 Test 2	CalTech10 1
(HS+LS)(SIFT+SPIN)	94.3	97.9	90.0	92.8	74.3	53. 9
Others	82.0	96.6	83.7	94.6	70.5	43
	Csurka.et al. (ICPR 2004)	Csurka.et al (ICPR 2004)	Opelt et al eccv 04	Jurie and Triggs iccv 05	Deselares et al cvpr 05	Grauman and Darrel iccv 05

Results are the mean values of the accuracies

Better reults on 5 datasets and comparable results on Pascal05 test set 1


Influence of Background

Questions:

- Background correlations?
- Do background features make recognition easier?
- What kinds of backgrounds are best for training?
- Test Bed: PASCAL 05
- Protocol:
 - Use bounding rectangles to separate foreground features (FF) from background features (BF)
 - Introduce two additional background sets:
 - Randomly shuffle backgrounds among all images (BF-RAND)
 - Constant natural scene (BF-CONST)

Influence of Background

Conclusions on influence of background

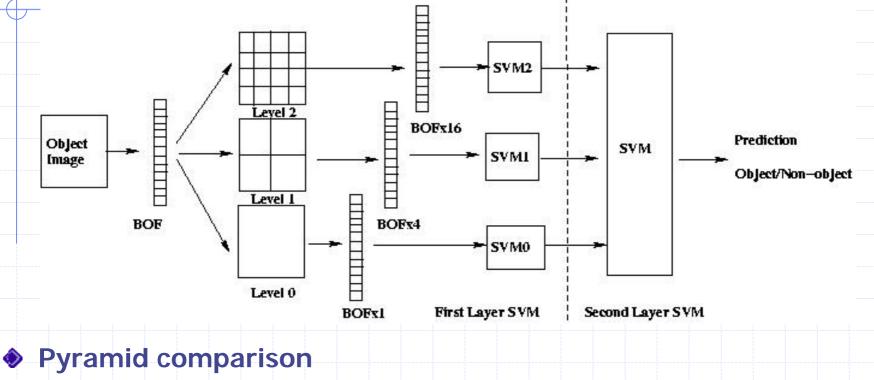
- Backgrounds do have correlations with the foreground objects, but adding them does not result in better performance for our method
- It is usually beneficial to train on a harder training set
 - Classifier trained on uncluttered or monotonous background tend to overfit
 - Classifiers trained on harder ones generalize well
 - Add random background clutter to training data if backgrounds may not be representative of test set

→ Based on these results, we include the hard examples marked with 0 for training in PASCAL'06

Outline

- Region extraction, description
- Signature/histogram
- Kernels and SVM

Implementation choice evaluation


- Detectors & descriptors, invariance, kernels
- Influence of backgrounds

Spatial bag of features

Spatial pyramid

Results on Pascal 06 validation data

Spatial Pyramid for Bag of Features

- **♦** A two-layer SVM classifier: first layer: χ^2 ; second: RBF
- Spatial pyramid matching kernel

[Lazebnik, Schmid & Ponce, CVPR 2006]

Spatial Pyramid Matching kernel

Histogram intersection at level I

$$I(H_{x}^{l}, H_{y}^{l}) = \sum_{i=1}^{D} \min(H_{x}^{l}(i), H_{y}^{l}(j))$$

Spatial pyramid matching kernel – mercer kernel

$$K^{l}(X, Y) = I^{L} + \sum_{l=0}^{L-1} \frac{1}{2^{L-l}} (I^{l} - I^{l+1})$$
$$= \frac{1}{2^{L}} I^{0} + \sum_{l=1}^{L} \frac{1}{2^{L-l+1}} I^{l}$$

PASCAL06 Experimental Settings

Regions:

- Sparse: HS+LS
- Dense: Multi-scale, fixed grid, 5000 points per image
- Kmeans -- cluster the descriptors of each class separately and then concatenate them, 300 clusters per class
- 3000 visual words for sparse and dense representations.
- **♦** Kernels: χ^2 kernel, spatial pyramid kernel
- Bag of features: (HS+LS)(SIFT) denoted as HS+LS combined with a two-layer SVM classification strategy.

Spatial pyramid

- train SVM for each spatial level, and then using the two-layer SVM classification strategy to combine them
- spatial pyramid matching kernel.
- levels up to 2

Classification: binary SVM with output normalized to [0, 1] by (x-min)/(max-min)

Methods Summary

- (HS+LS): the bag of keypoints method with a two-layer SVM classifier
 - (LS)(PMK): Laplacian points with spatial pyramid matching kernel
 - (DS)(PMK): Multi-scale dense points with spatial pyramid matching kernel
 - (DS)(PCh): Multi-scale dense points with a two-layer spatial pyramid SVM
 - (LS)(PCh): Laplacian points with a two-layer spatial pyramid SVM
 - **(LS)** : Laplacian points with a χ^2 kernel
 - (HS+LS)(SUM): the bag of keypoints method with a SUM of the x² distances

AUC for VOC Validation Set

						La construction de la constructi	
Methods	HS+LS	(LS)(PCh)	(DS)(PCh)	(LS)(PMK)	(DS)(PMK)	LS	HS+LS (SUM)
Bicycle	0.904	0.912	0.901	0.909	0.894	0.901	0.906
Bus	0.970	0.967	0.952	0.963	0.949	0.967	0.970
Car	0.955	0.954	0.956	0.950	0.955	0.953	0.956
Cat	0.923	0.921	0.908	0.916	0.902	0.915	0.926
Cow	0.931	0.935	0.925	0.933	0.919	0.931	0.928
Dog	0.865	0.855	0.853	0.848	0.841	0.853	0.861
Horse	0.920	0.929	0.897	0.912	0.874	0.918	0.915
Motorbike	0.935	0.935	0.915	0.924	0.908	0.934	0.937
Person	0.841	0.840	0.815	0.824	0.792	0.840	0.838
Sheep	0.925	0.936	0.925	0.934	0.928	0.931	0.927
Av.	0.917	0.918	0.905	0.911	0.896	0.914	0.916

(HS+LS), (LS)(PCh) the best

A two-layer SVM classifier better than spatial pyramid kernel : (LS)(PCh) > (LS)(PMK); DS(PCh) > (DS)(PMK)

Spatial information helps a bit (LS)(PCh) >= LS

AUC Measures PMK (Levels 0,1,2)

) /			1 1	- X (()	
	200				500			1000		
/(LS)(PMK) -	LO	L1	L2	LO	L1	L2	LO	L1	L2	
Bicycle	0.802	0.886	0.886	0.834	0.889	0.905	0.882	0.882	0.893	
Bus	0.862	0.885	0.907	0.926	0.917	0.929	0.943	0.939	0.948	
Car	0.920	0.937	0.943	0.935	0.946	0.949	0.942	0.949	0.953	
Cat	0.817	0.867	0.878	0.866	0.893	0.904	0.885	0.902	0.909	
Cow	0.833	0.852	0.890	0.887	0.914	0.909	0.910	0.909	0.914	
Dog	0.737	0.810	0.810	0.800	0.840	0.847	0.826	0.845	0.838	
Horse	0.766	0.860	0.844	0.860	0.873	0.882	0.889	0.877	0.870	
Motorbike	0.841	0.835	0.866	0.863	0.897	0.907	0.889	0.901	0.904	
Person	0.731	0.757	0.775	0.768	0.791	0.807	0.801	0.799	0.807	
Sheep	0.829	0.874	0.894	0.925	0.919	0.923	0.913	0.924	0.926	
Av.	0.814	0.857	0.869	0.866	0.888	0.896	0.888	0.893	0.896	

L2 usually better than L1, L0 with the same vocabulary

Larger vocabulary less improvement

Comparable with LS – bag of features with sufficient vocabulary

Conclusions

- Our approaches give excellent results -- (HS+LS), (LS)(PCh) the best
- Sparse (interest points sampling) rep. performs better than dense rep. (4830 vs. 5000)
- A two-layer spatial SVM classifier gives slightly better results than pyramid matching kernel
- Spatial constrains help classification, however, perform similarly to bag of features with a sufficient large vocabulary in the context of PASCAL'06