
The PASCAL Visual Object Classes Challenge

2008 (VOC2008) Development Kit

Mark Everingham John Winn

April 21, 2008

Contents

1 Challenge 3

2 Data 3
2.1 Classification/Detection Image Sets 3
2.2 Segmentation Taster Image Sets 4
2.3 Person Layout Taster Image Sets 6
2.4 Ground Truth Annotation . 6
2.5 Segmentation Taster Ground Truth 7
2.6 Person Layout Taster Ground Truth 7

3 Classification Task 8
3.1 Task . 8
3.2 Competitions . 8
3.3 Submission of Results . 8
3.4 Evaluation . 9

4 Detection Task 9
4.1 Task . 9
4.2 Competitions . 9
4.3 Submission of Results . 10
4.4 Evaluation . 10

5 Segmentation Taster 11
5.1 Task . 11
5.2 Competitions . 11
5.3 Submission of Results . 11
5.4 Evaluation . 11

6 Person Layout Taster 12
6.1 Task . 12
6.2 Competitions . 12
6.3 Submission of Results . 12
6.4 Evaluation . 14

1

7 Development Kit 14
7.1 Installation and Configuration . 14
7.2 Example Code . 15

7.2.1 Example Classifier Implementation 15
7.2.2 Example Detector Implementation 15
7.2.3 Example Segmenter Implementation 15
7.2.4 Example Layout Implementation 16

7.3 Non-MATLAB Users . 16

8 Using the Development Kit 16
8.1 Image Sets . 16

8.1.1 Classification/Detection Task Image Sets 16
8.1.2 Classification Task Image Sets 17
8.1.3 Segmentation Taster Image Sets 17
8.1.4 Person Layout Taster Image Sets 18

8.2 Development Kit Functions . 18
8.2.1 VOCinit . 18
8.2.2 PASreadrecord(filename) 19
8.2.3 viewanno(imgset) . 21

8.3 Classification Functions . 22
8.3.1 VOCevalcls(VOCopts,id,cls,draw) 22

8.4 Detection Functions . 22
8.4.1 VOCevaldet(VOCopts,id,cls,draw) 22
8.4.2 viewdet(id,cls,onlytp) 22

8.5 Segmentation Functions . 22
8.5.1 create segmentations from detections(id,confidence) 22
8.5.2 VOCevalseg(VOCopts,id) 23
8.5.3 VOClabelcolormap(N) . 23

8.6 Layout Functions . 23
8.6.1 VOCwritexml(rec,path) 23
8.6.2 VOCevallayout(VOCopts,id,draw) 23

2

1 Challenge

The goal of this challenge is to recognize objects from a number of visual object
classes in realistic scenes (i.e. not pre-segmented objects). There are twenty
object classes:

• person

• bird, cat, cow, dog, horse, sheep

• aeroplane, bicycle, boat, bus, car, motorbike, train

• bottle, chair, dining table, potted plant, sofa, tv/monitor

There are two main tasks:

• Classification: For each of the classes predict the presence/absence of at
least one object of that class in a test image.

• Detection: For each of the classes predict the bounding boxes of each
object of that class in a test image (if any).

In addition, there are two “taster” tasks operating on a subset of the provided
data:

• Segmentation: For each pixel in a test image, predict the class of the
object containing that pixel or ‘background’ if the object does not belong
to one of the twenty specified classes.

• Person Layout: For each ‘person’ object in a test image (indicated by
a bounding box of the person), predict the presence/absence of parts
(head/hands/feet), and the bounding boxes of those parts.

2 Data

The VOC2008 database contains a total of 10,057 annotated images. The data
is released in two phases: (i) training and validation data with annotation is
released with this development kit; (ii) test data without annotation is released
at a later date. After completion of the challenge, annotation for the test data
will be released.

2.1 Classification/Detection Image Sets

For the main tasks – classification and detection, there are four sets of images
provided:

train: Training data

val: Validation data (suggested). The validation data may be used as addi-
tional training data (see below).

trainval: The union of train and val.

test: Test data. The test set is not provided in the development kit. It will be
released in good time before the deadline for submission of results.

3

Table 1: Statistics of the main image sets. Object statistics list only the ‘non-
difficult’ objects used in the evaluation.

train val trainval test

img obj img obj img obj img obj

Aeroplane 119 159 117 157 236 316 – –
Bicycle 92 133 100 136 192 269 – –

Bird 166 239 139 237 305 476 – –
Boat 111 170 96 166 207 336 – –

Bottle 129 229 114 228 243 457 – –
Bus 48 61 52 68 100 129 – –
Car 243 426 223 414 466 840 – –
Cat 159 186 169 192 328 378 – –

Chair 177 313 174 310 351 623 – –
Cow 37 61 37 69 74 130 – –

Diningtable 53 55 52 55 105 110 – –
Dog 186 238 202 239 388 477 – –

Horse 96 139 102 146 198 285 – –
Motorbike 102 137 102 135 204 272 – –

Person 947 1996 1055 2172 2002 4168 – –
Pottedplant 85 178 95 183 180 361 – –

Sheep 32 67 32 78 64 145 – –
Sofa 69 74 65 77 134 151 – –

Train 78 83 73 83 151 166 – –
Tvmonitor 107 138 108 136 215 274 – –

Total 2113 5082 2227 5281 4340 10363 – –

Table 1 summarizes the number of objects and images (containing at least
one object of a given class) for each class and image set. The data has been split
into 50% for training/validation and 50% for testing. The distributions of images
and objects by class are approximately equal across the training/validation and
test sets.

2.2 Segmentation Taster Image Sets

For the segmentation taster task, corresponding image sets are provided as in
the classification/detection tasks. To increase the amount of data, the training
and validation image sets include images from the 2007 segmentation taster,
indicated by the ‘2007’ prefix. The test set contains only new images, and is a
subset of the test set for the main tasks for which pixel-wise segmentations have
been prepared. Table 2 summarizes the number of objects and images (contain-
ing at least one object of a given class) for each class and image set, for the
combined 2007 and 2008 data. In addition to the segmented images for training
and validation, participants are free to use the un-segmented training/validation
images supplied for the main classification/detection tasks.

4

Table 2: Statistics of the segmentation taster image sets.

train val trainval test

img obj img obj img obj img obj

Aeroplane 32 35 26 32 58 67 – –
Bicycle 27 35 23 33 50 68 – –

Bird 35 44 24 33 59 77 – –
Boat 33 56 27 31 60 87 – –

Bottle 30 55 28 41 58 96 – –
Bus 25 31 27 40 52 71 – –
Car 46 76 34 77 80 153 – –
Cat 30 34 35 39 65 73 – –

Chair 49 109 40 79 89 188 – –
Cow 19 48 25 41 44 89 – –

Diningtable 35 36 32 35 67 71 – –
Dog 26 31 39 51 65 82 – –

Horse 30 38 37 40 67 78 – –
Motorbike 33 37 26 38 59 75 – –

Person 172 299 171 320 343 619 – –
Pottedplant 26 46 34 82 60 128 – –

Sheep 20 49 27 72 47 121 – –
Sofa 27 31 33 41 60 72 – –

Train 27 32 30 34 57 66 – –
Tvmonitor 36 44 33 44 69 88 – –

Total 511 1166 512 1203 1023 2369 – –

5

Table 3: Statistics of the person layout taster image sets. Object statistics list
only the ‘person’ objects for which layout information (parts) is present.

train val trainval test

img obj img obj img obj img obj

Person 141 202 104 165 245 367 – –

2.3 Person Layout Taster Image Sets

For the person layout taster task, corresponding image sets are provided as in
the classification/detection tasks. A person is indicated by a bounding box, and
each person has been annotated with part layout (head, hands, feet). As in the
segmentation taster task, the training and validation image sets include images
from the 2007 person layout taster, indicated by the ‘2007’ prefix. The test set
contains only new images, and is disjoint from the test set for the main tasks.
Table 3 summarizes the number of ‘person’ objects annotated with layout for
each image set.

2.4 Ground Truth Annotation

Objects of the twenty classes listed above are annotated in the ground truth.
For each object, the following annotation is present:

• class: the object class e.g. ‘car’ or ‘bicycle’

• bounding box: an axis-aligned rectangle specifying the extent of the
object visible in the image.

• view: ‘frontal’, ‘rear’, ‘left’ or ‘right’. The views are subjectively marked
to indicate the view of the ‘bulk’ of the object. Some objects have no view
specified.

• ‘truncated’: an object marked as ‘truncated’ indicates that the bounding
box specified for the object does not correspond to the full extent of the
object e.g. an image of a person from the waist up, or a view of a car
extending outside the image.

• ‘occluded’: an object marked as ‘occluded’ indicates that a significant
portion of the object within the bounding box is occluded by another
object.

• ‘difficult’: an object marked as ‘difficult’ indicates that the object is con-
sidered difficult to recognize, for example an object which is clearly visible
but unidentifiable without substantial use of context. Objects marked as
difficult are currently ignored in the evaluation of the challenge.

In preparing the ground truth, annotators were given a detailed list of guidelines
on how to complete the annotation. These are available on the main challenge
web-site [1].

6

a. b. c.

Figure 1: Example of segmentation taster ground truth. a. Training image
b. Class segmentation showing background, car, horse and person labels. The
cream-colored ‘void’ label is also used in border regions and to mask difficult ob-
jects. c. Object segmentation where individual object instances are separately
labelled.

2.5 Segmentation Taster Ground Truth

For the segmentation image sets, each image has two corresponding types of
ground truth segmentation provided:

• class segmentation: each pixel is labelled with the ground truth class or
background.

• object segmentation: each pixel is labelled with an object number (from
which the class can be obtained) or background.

Figure 2.5 gives an example of these two types of segmentation for one of the
training set images. The ground truth segmentations are provided to a high de-
gree of accuracy, but are not pixel accurate, as this would have greatly extended
the time required to gather these segmentations. Instead, they were labelled so
that a bordering region with a width of five pixels may contain either object
or background. Bordering regions are marked with a ‘void’ label (index 255),
indicating that the contained pixels can be any class including background. The
void label is also used to mask out ambiguous, difficult or heavily occluded ob-
jects and also to label regions of the image containing objects too small to be
marked, such as crowds of people. All void pixels are ignored when comput-
ing segmentation accuracies and should be treated as unlabelled pixels during
training.

In addition to the ground truth segmentations given, participants are free
to use any of the ground truth annotation for the classification/detection tasks.

2.6 Person Layout Taster Ground Truth

For the person layout taster task, ‘person’ objects are additionally annotated
with three ‘parts’:

7

• head – zero or one per person

• hand – zero, one, or two per person

• foot – zero, one, or two per person

For each annotated person, the presence or absence of each part is listed, and for
each part present, the bounding box is specified. The test images for the person
layout taster are disjoint from the main image sets. There are no ‘difficult’
objects.

3 Classification Task

3.1 Task

For each of the twenty object classes predict the presence/absence of at least
one object of that class in a test image. The output from your system should be
a real-valued confidence of the object’s presence so that a precision/recall curve
can be drawn. Participants may choose to tackle all, or any subset of object
classes, for example “cars only” or “motorbikes and cars”.

3.2 Competitions

Two competitions are defined according to the choice of training data: (i) taken
from the VOC trainval data provided, or (ii) from any source excluding the
VOC test data provided:

No. Task Training data Test data
1 Classification trainval test

2 Classification any but VOC test test

In competition 1, any annotation provided in the VOC train and val sets
may be used for training, for example bounding boxes or particular views e.g.
‘frontal’ or ‘left’. Participants are not permitted to perform additional manual
annotation of either training or test data.

In competition 2, any source of training data may be used except the provided
test images. Researchers who have pre-built systems trained on other data are
particularly encouraged to participate. The test data includes images from
“flickr” (www.flickr.com); this source of images may not be used for training.
Participants who have acquired images from flickr for training must submit them
to the organizers to check for overlap with the test set.

3.3 Submission of Results

A separate text file of results should be generated for each competition (1 or 2)
and each class e.g. ‘car’. Each line should contain a single identifier and the
confidence output by the classifier, separated by a space, for example:

comp1_cls_test_car.txt:

2008_000002 0.129824

2008_000005 0.556163

2008_000010 0.227097

8

2008_000014 0.764145

2008_000016 0.098249

Greater confidence values signify greater confidence that the image contains
an object of the class of interest. The example classifier implementation (sec-
tion 7.2.1) includes code for generating a results file in the required format.

3.4 Evaluation

The classification task will be judged by the precision/recall curve. The principal
quantitative measure used will be the average precision (AP). Example code for
computing the precision/recall and AP measure is provided in the development
kit.

Images which contain only objects marked as ‘difficult’ (section 2.4) are
currently ignored by the evaluation. The final evaluation may include separate
results including such “difficult” images, depending on the submitted results.

Participants are expected to submit a single set of results per method em-
ployed. Participants who have investigated several algorithms may submit one
result per method. Changes in algorithm parameters do not constitute a differ-
ent method – all parameter tuning must be conducted using the training and
validation data alone.

4 Detection Task

4.1 Task

For each of the twenty classes predict the bounding boxes of each object of
that class in a test image (if any). Each bounding box should be output with
an associated real-valued confidence of the detection so that a precision/recall
curve can be drawn. Participants may choose to tackle all, or any subset of
object classes, for example “cars only” or “motorbikes and cars”.

4.2 Competitions

Two competitions are defined according to the choice of training data: (i) taken
from the VOC trainval data provided, or (ii) from any source excluding the
VOC test data provided:

No. Task Training data Test data
3 Detection trainval test

4 Detection any but VOC test test

In competition 3, any annotation provided in the VOC train and val sets
may be used for training, for example bounding boxes or particular views e.g.
‘frontal’ or ‘left’. Participants are not permitted to perform additional manual
annotation of either training or test data.

In competition 4, any source of training data may be used except the provided
test images. Researchers who have pre-built systems trained on other data are
particularly encouraged to participate. The test data includes images from
“flickr” (www.flickr.com); this source of images may not be used for training.
Participants who have acquired images from flickr for training must submit them
to the organizers to check for overlap with the test set.

9

4.3 Submission of Results

A separate text file of results should be generated for each competition (3 or 4)
and each class e.g. ‘car’. Each line should be a detection output by the detector
in the following format:

<image identifier> <confidence> <left> <top> <right> <bottom>

where (left,top)-(right,bottom) defines the bounding box of the detected
object. The top-left pixel in the image has coordinates (1, 1). Greater confidence
values signify greater confidence that the detection is correct. An example file
excerpt is shown below. Note that for the image 2008 000016, multiple objects
are detected:

comp3_det_test_car.txt:

2008_000014 0.764145 44.182900 49.462700 466.030200 235.963600

2008_000016 0.098249 15.763800 81.605700 486.900500 220.593300

2008_000016 0.098249 200.044400 58.959100 359.902300 99.811700

2008_000016 0.098249 13.543500 47.413900 177.841900 96.703400

2008_000016 0.098249 467.806400 69.616300 500.000000 103.364100

2008_000020 0.112754 91.691600 35.703600 482.859300 305.613800

The example detector implementation (section 7.2.2) includes code for generat-
ing a results file in the required format.

4.4 Evaluation

The detection task will be judged by the precision/recall curve. The principal
quantitative measure used will be the average precision (AP). Example code for
computing the precision/recall and AP measure is provided in the development
kit.

Detections are considered true or false positives based on the area of overlap
with ground truth bounding boxes. To be considered a correct detection, the
area of overlap ao between the predicted bounding box Bp and ground truth
bounding box Bgt must exceed 50% by the formula:

ao =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(1)

Example code for computing this overlap measure is provided in the develop-
ment kit. Multiple detections of the same object in an image are considered
false detections e.g. 5 detections of a single object is counted as 1 correct detec-
tion and 4 false detections – it is the responsibility of the participant’s system
to filter multiple detections from its output.

Objects marked as ‘difficult’ (section 2.4) are currently ignored by the evalua-
tion. The final evaluation may include separate results including such “difficult”
images, depending on the submitted results.

Participants are expected to submit a single set of results per method em-
ployed. Participants who have investigated several algorithms may submit one
result per method. Changes in algorithm parameters do not constitute a differ-
ent method – all parameter tuning must be conducted using the training and
validation data alone.

10

5 Segmentation Taster

5.1 Task

For each test image pixel, predict the class of the object containing that pixel
or ’background’ if the object does not belong to one of the twenty specified
classes. The output from your system should be an indexed image with each
pixel index indicating the number of the inferred class (1-20) or zero, indicating
background.

5.2 Competitions

A single competition is defined:

No. Task Training data Test data
5 Segmentation trainval test

Any annotation provided in the VOC train and val sets may be used for
training, for example segmentation, bounding boxes or particular views e.g.
‘frontal’ or ‘left’. Both the images with and without segmentation provided
may be used if desired. Participants are not permitted to perform additional
manual annotation of either training or test data.

5.3 Submission of Results

Submission of results should be as collections of PNG format indexed image
files, one per test image, with pixel indices from 0 to 20. The example seg-
menter implementation (section 7.2.3) includes code for generating results in
the required format.

Along with the submitted image files, participants should also state whether
their method used segmentation training data only or both segmentation and
bounding box training data.

5.4 Evaluation

The segmentation taster task will be judged by average segmentation accuracy
across the twenty classes and the background class. For VOC2008 the segmen-
tation accuracy for a class will be assessed using the intersection/union metric,
defined as the number of correctly labelled pixels of that class, divided by the
number of pixels labelled with that class in either the ground truth labelling or
the inferred labelling. Equivalently, the accuracy is given by the equation,

segmentation accuracy =
true positives

true positives + false positives + false negatives

Code is provided to compute segmentation accuracies for each class, and the
overall average accuracy (see section 8.5.2).

Participants are expected to submit a single set of results per method em-
ployed. Participants who have investigated several algorithms may submit one
result per method. Changes in algorithm parameters do not constitute a differ-
ent method – all parameter tuning must be conducted using the training and
validation data alone.

11

6 Person Layout Taster

6.1 Task

For each ‘person’ object in a test image (their bounding box is provided) predict
the presence/absence of parts (head/hands/feet), and the bounding boxes of
those parts. Each prediction for a person layout should be output with an
associated real-valued confidence of the layout so that a precision/recall curve
can be drawn. Multiple estimates of layout may be output for each person,
but estimates other than the first correct are treated as false positives as in the
detection task.

As noted, the bounding box of the person is provided. To be considered
a correct estimate of the layout, two conditions must be satisfied: i) correct
prediction of parts present/absent; ii) correct prediction of bounding boxes for
all parts.

6.2 Competitions

Two competitions are defined according to the choice of training data: (i) taken
from the VOC trainval data provided, or (ii) from any source excluding the
VOC test data provided:

No. Task Training data Test data
6 Layout trainval test

7 Layout any but VOC test test

In competition 6, any annotation provided in the VOC train and val sets
may be used for training, for example bounding boxes or particular views e.g.
‘frontal’ or ‘left’. Participants are not permitted to perform additional manual
annotation of either training or test data.

In competition 7, any source of training data may be used except the provided
test images. Researchers who have pre-built systems trained on other data are
particularly encouraged to participate. The test data includes images from
“flickr” (www.flickr.com); this source of images may not be used for training.
Participants who have acquired images from flickr for training must submit them
to the organizers to check for overlap with the test set.

6.3 Submission of Results

To support the hierarchical (person+parts) nature of this task, an XML format
has been adopted for submission of results. A separate XML file of results
should be generated for each competition (6 or 7). The overall format should
follow:

<results>

<layout>

... layout estimate 1 ...

</layout>

<layout>

... layout estimate 2 ...

</layout>

</results>

12

Each detection is represented by a <layout> element. The order of detections
is not important. An example detection is shown here:

<layout>



<object>3</object>

<confidence>-8</confidence>

<part>

<class>head</class>

<bndbox>

<xmin>78</xmin>

<ymin>82</ymin>

<xmax>120</xmax>

<ymax>136</ymax>

</bndbox>

</part>

<part>

<class>hand</class>

<bndbox>

<xmin>41</xmin>

<ymin>151</ymin>

<xmax>74</xmax>

<ymax>190</ymax>

</bndbox>

</part>

<part>

<class>hand</class>

<bndbox>

<xmin>119</xmin>

<ymin>146</ymin>

<xmax>147</xmax>

<ymax>184</ymax>

</bndbox>

</part>

</layout>

The <image> element specifies the image identifier. The <object> specifies the
index of the object to which the layout relates (the first object in the image has
index 1) and should match that provided in the image set files (section 8.1.4).
The <confidence> element specifies the confidence of the layout estimate, used
to generate a precision/recall curve as in the detection task.

Each <part> element specifies the detection of a particular part of the per-
son i.e. head/hand/foot. If the part is predicted to be absent/invisible, the
corresponding element should be omitted. For each part, the <class> element
specifies the type of part: head, hand or foot. The <bndbox> element specifies
the predicted bounding box for that part; bounding boxes are specified in image
co-ordinates and need not be contained in the provided person bounding box.

To ease creation of the required XML results file for MATLAB users, a
function is included in the development kit to convert MATLAB structures to
XML. See the VOCwritexml function (section 8.6.1). The example person layout

13

implementation (section 7.2.4) includes code for generating a results file in the
required format.

6.4 Evaluation

The person layout task will be judged by the precision/recall curve. The princi-
pal quantitative measure used will be the average precision (AP). Example code
for computing the precision/recall and AP measure is provided in the develop-
ment kit.

To be considered a true positive, each layout estimate must satisfy two cri-
teria:

• set and number of predicted parts matches ground truth exactly e.g.
{head, hand, hand} or {head, hand, foot}

• predicted bounding box of each part overlaps ground truth by at least
50%

The overlap between bounding boxes is computed as in the detection task.
Note that in the case of multiple parts of the same type e.g. two hands, it is not

necessary to predict which part is which.

7 Development Kit

The development kit is packaged in a single gzipped tar file containing MATLAB
code and (this) documentation. The images, annotation, and lists specifying
training/validation sets for the challenge are provided in a separate archive
which can be obtained via the VOC web pages [1].

7.1 Installation and Configuration

The simplest installation is achieved by placing the development kit and chal-
lenge databases in a single location. After untarring the development kit, down-
load the challenge image database and untar into the same directory, resulting
in the following directory structure:

VOCdevkit/ % development kit

VOCdevkit/VOCcode/ % VOC utility code

VOCdevkit/results/VOC2008/ % your results on VOC2008

VOCdevkit/results/VOC2007/ % your results on VOC2007

VOCdevkit/local/ % example code temp dirs

VOCdevkit/VOC2008/ImageSets % image sets

VOCdevkit/VOC2008/Annotations % annotation files

VOCdevkit/VOC2008/JPEGImages % images

VOCdevkit/VOC2008/SegmentationObject % segmentations by object

VOCdevkit/VOC2008/SegmentationClass % segmentations by class

If you set the current directory in MATLAB to the VOCdevkit directory you
should be able to run the example functions:

• example classifier

14

• example detector

• example segmenter

• example layout

If desired, you can store the code, images/annotation, and results in separate
directories, for example you might want to store the image data in a common
group location. To specify the locations of the image/annotation, results, and
working directories, edit the VOCinit.m file, e.g.

% change this path to point to your copy of the PASCAL VOC data

VOCopts.datadir=’/homes/group/VOCdata/’;

% change this path to a writable directory for your results

VOCopts.resdir=’/homes/me/VOCresults/’;

% change this path to a writable local directory for the example code

VOCopts.localdir=’/tmp/’;

Note that in developing your own code you need to include the VOCdevkit/VOCcode
directory in your MATLAB path, e.g.

>> addpath /homes/me/code/VOCdevkit/VOCcode

7.2 Example Code

Example implementations are provided for all tasks. The aim of these (minimal)
implementations is solely to demonstrate use of the code in the development kit.

7.2.1 Example Classifier Implementation

The file example classifier.m contains a complete implementation of the clas-
sification task. For each VOC object class a simple classifier is trained on the
train set; the classifier is then applied to the val set and the output saved to
a results file in the format required by the challenge; a precision/recall curve is
plotted and the ‘average precision’ (AP) measure displayed.

7.2.2 Example Detector Implementation

The file example detector.m contains a complete implementation of the de-
tection task. For each VOC object class a simple (and not very successful!)
detector is trained on the train set; the detector is then applied to the val set
and the output saved to a results file in the format required by the challenge;
a precision/recall curve is plotted and the ‘average precision’ (AP) measure
displayed.

7.2.3 Example Segmenter Implementation

An example segmenter is provided which converts detection results into seg-
mentation results, using create segmentations from detections (described
below). For example:

15

>> example_detector;

>> example_segmenter;

This runs the example detector, converts the detections into segmentations and
displays a table of per-class segmentation accuracies, along with an overall av-
erage accuracy.

7.2.4 Example Layout Implementation

The file example layout.m contains a complete implementation of the person
layout task. For each specified person a simple (and not very successful!) layout
predictor is trained on the train set; the layout predictor is then applied to the
val set and the output saved to a results file in the format required by the
challenge; a precision/recall curve is plotted and the ‘average precision’ (AP)
measure displayed.

7.3 Non-MATLAB Users

For non-MATLAB users, the file formats used for the VOC2008 data should be
straightforward to use in other environments. Image sets (see below) are vanilla
text files. Annotation files are XML format and should be readable by any
standard XML parser. Images are stored in JPEG format, and segmentation
ground truth in PNG format.

8 Using the Development Kit

The development kit provides functions for loading annotation data. Example
code for computing precision/recall curves and segmentation accuracy, and for
viewing annotation is also provided.

8.1 Image Sets

8.1.1 Classification/Detection Task Image Sets

The VOC2008/ImageSets/Main/ directory contains text files specifying lists of
images for the main classification/detection tasks.

The files train.txt, val.txt, trainval.txt and test.txt list the im-
age identifiers for the corresponding image sets (training, validation, train-
ing+validation and testing). Each line of the file contains a single image iden-
tifier. The following MATLAB code reads the image list into a cell array of
strings:

imgset=’train’;

ids=textread(sprintf(VOCopts.imgsetpath,imgset),’%s’);

For a given image identifier ids{i}, the corresponding image and annotation
file paths can be produced thus:

imgpath=sprintf(VOCopts.imgpath,ids{i});

annopath=sprintf(VOCopts.annopath,ids{i});

Note that the image sets used are the same for all classes. For each competition,
participants are expected to provide output for all images in the test set.

16

8.1.2 Classification Task Image Sets

To simplify matters for participants tackling only the classification task, class-
specific image sets with per-image ground truth are also provided. The file
VOC2008/ImageSets/Main/<class> <imgset>.txt contains image identifiers and
ground truth for a particular class and image set, for example the file car train.txt

applies to the ‘car’ class and train image set.
Each line of the file contains a single image identifier and ground truth label,

separated by a space, for example:

2008_000002 -1

2008_000005 0

2008_000010 -1

The following MATLAB code reads the image list into a cell array of strings
and the ground truth label into a corresponding vector:

imgset=’train’;

cls=’car’;

[ids,gt]=textread(sprintf(VOCopts.clsimgsetpath, ...

cls,imgset),’%s %d’);

There are three ground truth labels:

-1: Negative: The image contains no objects of the class of interest. A classi-
fier should give a ‘negative’ output.

1: Positive: The image contains at least one object of the class of interest.
A classifier should give a ‘positive’ output.

0: “Difficult”: The image contains only objects of the class of interest marked
as ‘difficult’.

The “difficult” label indicates that all objects of the class of interest have
been annotated as “difficult”, for example an object which is clearly visible but
difficult to recognize without substantial use of context. Currently the eval-
uation ignores such images, contributing nothing to the precision/recall curve
or AP measure. The final evaluation may include separate results including
such “difficult” images, depending on the submitted results. Participants are
free to omit these images from training or include as either positive or negative
examples.

8.1.3 Segmentation Taster Image Sets

The VOC2008/ImageSets/Segmentation/ directory contains text files specify-
ing lists of images for the segmentation taster task.

The files train.txt, val.txt, trainval.txt and test.txt list the im-
age identifiers for the corresponding image sets (training, validation, train-
ing+validation and testing). Each line of the file contains a single image iden-
tifier. The following MATLAB code reads the image list into a cell array of
strings:

imgset=’train’;

ids=textread(sprintf(VOCopts.seg.imgsetpath,imgset),’%s’);

17

For a given image identifier ids{i}, file paths for the corresponding image,
annotation, segmentation by object instance and segmentation by class can be
produced thus:

imgpath=sprintf(VOCopts.imgpath,ids{i});

annopath=sprintf(VOCopts.annopath,ids{i});

clssegpath=sprintf(VOCopts.seg.clsimgpath,ids{i});

objsegpath=sprintf(VOCopts.seg.instimgpath,ids{i});

Participants are expected to provide output for all images in the test set.

8.1.4 Person Layout Taster Image Sets

The VOC2008/ImageSets/Layout/ directory contains text files specifying lists
of image for the person layout taster task.

The files train.txt, val.txt, trainval.txt and test.txt list the im-
age identifiers for the corresponding image sets (training, validation, train-
ing+validation and testing). Each line of the file contains a single image iden-
tifier, and a single object index. Together these specify a ‘person’ object for
which layout is provided or to be estimated, for example:

2008_000026 1

2008_000034 4

The following MATLAB code reads the image list into a cell array of strings
and the object indices into a corresponding vector:

imgset=’train’;

[imgids,objids]=textread(sprintf(VOCopts.layout.imgsetpath, ...

VOCopts.trainset),’%s %d’);

The annotation for the object (bounding box only in the test data) can then
be obtained using the image identifier and object index:

rec=PASreadrecord(sprintf(VOCopts.annopath,imgids{i}));

obj=rec.objects(objids{i});

8.2 Development Kit Functions

8.2.1 VOCinit

The VOCinit script initializes a single structure VOCopts which contains options
for the PASCAL functions including directories containing the VOC data and
options for the evaluation functions (not to be modified).

The field classes lists the object classes for the challenge in a cell array:

VOCopts.classes={’aeroplane’,’bicycle’,’bird’,’boat’,...

’bottle’,’bus’,’car’,’cat’,...

’chair’,’cow’,’diningtable’,’dog’,...

’horse’,’motorbike’,’person’,’pottedplant’,...

’sheep’,’sofa’,’train’,’tvmonitor’};

The field trainset specifies the image set used by the example evaluation
functions for training:

18

VOCopts.trainset=’train’; % use train for development

Note that participants are free to use both training and validation data in
any manner they choose for the final challenge.

The field testset specifies the image set used by the example evaluation
functions for testing:

VOCopts.testset=’val’; % use validation data for development

Other fields provide, for convenience, paths for the image and annotation
data and results files. The use of these paths is illustrated in the example
implementations.

Running on VOC2007 test set. The flag VOC2007 defined at the start of
the VOCinit.m script specifies whether the VOC2007 or VOC2008 data should
be used. This changes the directories used for image sets and images and the
results directory. To run on the VOC2007 test set, set the flag to “true” as
indicated in the script. Note that the intention is to train on VOC2008 data
and test on VOC2007 data.

8.2.2 PASreadrecord(filename)

The PASreadrecord function reads the annotation data for a particular image
from the annotation file specified by filename, for example:

>> rec=PASreadrecord(sprintf(VOCopts.annopath,’2008_000026’))

rec =

folder: ’VOC2008’

filename: ’2008_000026.jpg’

source: [1x1 struct]

owner: [1x1 struct]

size: [1x1 struct]

segmented: 0

imgname: ’VOC2008/JPEGImages/2008_000026.jpg’

imgsize: [500 375 3]

database: ’The VOC2008 Database’

objects: [1x2 struc

The imgname field specifies the path (relative to the main VOC data path)
of the corresponding image. The imgsize field specifies the image dimen-
sions as (width,height,depth). The database field specifies the data source
(VOC2008). The segmented field specifies if a segmentation is available for this
image. The folder and filename fields provide an alternative specification of
the image path, and size an alternative specification of the image size:

>> rec.size

ans =

width: 500

19

height: 375

depth: 3

The source field contains additional information about the source of the image
e.g. web-site and owner. This information is obscured until completion of the
challenge.

Objects annotated in the image are stored in the struct array objects, for
example:

>> rec.objects(1)

ans =

class: ’person’

view: ’Frontal’

truncated: 1

occluded: 1

difficult: 0

label: ’PASpersonFrontalTruncOcc’

orglabel: ’PASpersonFrontalTruncOcc’

bbox: [122.1875 7.8125 371.5625 375]

bndbox: [1x1 struct]

polygon: []

mask: []

hasparts: 1

part: [1x3 struct]

The class field contains the object class. The view field contains the view:
Frontal, Rear, Left (side view, facing left of image), Right (side view, facing
right of image), or an empty string indicating another, or un-annotated view.

The truncated field being set to 1 indicates that the object is “truncated”
in the image. The definition of truncated is that the bounding box of the object
specified does not correspond to the full extent of the object e.g. an image of
a person from the waist up, or a view of a car extending outside the image.
Participants are free to use or ignore this field as they see fit.

The occluded field being set to 1 indicates that the object is significantly
occluded by another object. Participants are free to use or ignore this field as
they see fit.

The difficult field being set to 1 indicates that the object has been anno-
tated as “difficult”, for example an object which is clearly visible but difficult to
recognize without substantial use of context. Currently the evaluation ignores
such objects, contributing nothing to the precision/recall curve. The final evalu-
ation may include separate results including such “difficult” objects, depending
on the submitted results. Participants may include or exclude these objects
from training as they see fit.

The bbox field specifies the bounding box of the object in the image, as
[left,top,right,bottom]. The top-left pixel in the image has coordinates
(1, 1). The bndbox field specifies the bounding box in an alternate form:

>> rec.objects(1).bndbox

20

ans =

xmin: 122.1875

ymin: 7.8125

xmax: 371.5625

ymax: 375

For backward compatibility, the label and orglabel fields specify the PAS-
CAL label for the object, comprised of class, view and truncated/difficult flags.
The polygon and mask specify polygon/per-object segmentations, and are not
provided for the VOC2008 data.

The hasparts field specifies if the object has sub-object “parts” annotated.
For the VOC2008 data, such annotation is available for a subset of the ‘person’
objects, used in the layout taster task. Object parts are stored in the struct
array part, for example:

>> rec.objects(1).part(1)

ans =

class: ’head’

view: ’’

truncated: 0

occluded: 0

difficult: 0

label: ’PAShead’

orglabel: ’PAShead’

bbox: [193.7966 9.5616 285.6810 130.8302]

bndbox: [1x1 struct]

polygon: []

mask: []

hasparts: 0

part: []

The format of object parts is identical to that for top-level objects. For the
‘person’ parts in the VOC2008 data, parts are not annotated with view, or
truncated/difficult flags. The bounding box of a part is specified in image
coordinates in the same way as for top-level objects. Note that the object parts
may legitimately extend outside the bounding box of the parent object.

8.2.3 viewanno(imgset)

The viewanno function displays the annotation for images in the image set
specified by imgset. Some examples:

>> viewanno(’Main/train’);

>> viewanno(’Main/car_val’);

>> viewanno(’Layout/train’);

>> viewanno(’Segmentation/val’);

21

8.3 Classification Functions

8.3.1 VOCevalcls(VOCopts,id,cls,draw)

The VOCevalcls function performs evaluation of the classification task, com-
puting a precision/recall curve and the average precision (AP) measure. The
arguments id and cls specify the results file to be loaded, for example:

>> [rec,prec,ap]=VOCevalcls(VOCopts,’comp1’,’car’,true);

See example classifier for further examples. If the argument draw is true,
the precision/recall curve is drawn in a figure window. The function returns
vectors of recall and precision rates in rec and prec, and the average precision
measure in ap.

8.4 Detection Functions

8.4.1 VOCevaldet(VOCopts,id,cls,draw)

The VOCevaldet function performs evaluation of the detection task, computing
a precision/recall curve and the average precision (AP) measure. The arguments
id and cls specify the results file to be loaded, for example:

>> [rec,prec,ap]=VOCevaldet(VOCopts,’comp3’,’car’,true);

See example detector for further examples. If the argument draw is true, the
precision/recall curve is drawn in a figure window. The function returns vectors
of recall and precision rates in rec and prec, and the average precision measure
in ap.

8.4.2 viewdet(id,cls,onlytp)

The viewdet function displays the detections stored in a results file for the
detection task. The arguments id and cls specify the results file to be loaded,
for example:

>> viewdet(’comp3’,’car’,true)

If the onlytp argument is true, only the detections considered true positives by
the VOC evaluation measure are displayed.

8.5 Segmentation Functions

8.5.1 create segmentations from detections(id,confidence)

This function creates segmentation results from detection results.
create segmentations from detections(id) creates segmentations from

the detection results with specified identifier e.g. comp3. This is achieved
by rendering the bounding box for each detection in class order, so that later
classes overwrite earlier classes (e.g. a person bounding box will overwrite an
overlapping an aeroplane bounding box). All detections will be used, no matter
what their confidence level.

create segmentations from detections(id,confidence) does the same,
but only detections above the specified confidence will be used.

See example segmenter for an example.

22

8.5.2 VOCevalseg(VOCopts,id)

The VOCevalseg function performs evaluation of the segmentation task, com-
puting a confusion matrix and segmentation accuracies for the segmentation
task. It returns per-class percentage accuracies, the average overall percentage
accuracy, and a confusion matrix, for example:

>> [accuracies,avacc,conf,rawcounts] = VOCevalseg(VOCopts,’comp3’)

Accuracies are defined by the intersection/union measure. The optional fourth
output ‘rawcounts’ returns an un-normalized confusion matrix containing raw
pixel counts. See example segmenter for another example. This function will
also display a table of overall and per-class accuracies.

8.5.3 VOClabelcolormap(N)

The VOClabelcolormap function creates the color map which has been used for
all provided indexed images. You should use this color map for writing your
own indexed images, for consistency. The size of the color map is given by N,
which should generally be set to 256 to include a color for the ‘void’ label.

8.6 Layout Functions

8.6.1 VOCwritexml(rec,path)

The VOCwritexml function writes a MATLAB structure array to a correspond-
ing XML file. It is provided to support the creation of XML results files for the
person layout taster. An example of usage can be found in example layout.

8.6.2 VOCevallayout(VOCopts,id,draw)

The VOCevallayout function performs evaluation of the person layout task,
computing a precision/recall curve and the average precision (AP) measure.
The arguments id and cls specify the results file to be loaded, for example:

>> [rec,prec,ap]=VOCevallayout(VOCopts,’comp6’,true);

See example layout for further examples. If the argument draw is true, the
precision/recall curve is drawn in a figure window. The function returns vectors
of recall and precision rates in rec and prec, and the average precision measure
in ap.

Acknowledgements

We gratefully acknowledge the following, who spent many long hours providing
annotation for the VOC2008 database: Jan-Hendrik Becker, Patrick Buehler,
Kian Ming Chai, Miha Drenik, Chris Engels, Jan Van Gemert, Hedi Harzallah,
Nicolas Heess, Zdenek Kalal, Lubor Ladicky, Marcin Marszalek, Alastair Moore,
Maria-Elena Nilsback, Paul Sturgess, David Tingdahl, Hirofumi Uemura, Mar-
tin Vogt.

The preparation and running of this challenge is supported by the EU-funded
PASCAL Network of Excellence on Pattern Analysis, Statistical Modelling and
Computational Learning.

23

References

[1] The PASCAL Visual Object Classes Challenge (VOC2008). http://www.

pascal-network.org/challenges/VOC/voc2008/index.html.

24

