Image Classification Using Gaussian Mixture and Local Coordinate Coding

Kai Yu
NEC Laboratories America, Cupertino, California, USA

Contributors:
Jinjun Wang, Fengjun Lv, Wei Xu, Yihong Gong
Xi Zhou, Jianchao Yang, Thomas Huang,
Tong Zhang
Chen Wu

NEC Laboratories America
Univ. of Illinois at Urbana-Champaign
Rutgers University
Stanford University

PASCAL VOC Challenge, ICCV, at Kyoto, Japan, October 3rd, 2009
Where We Are in This Competition

<table>
<thead>
<tr>
<th>Category</th>
<th>Our 4 submissions</th>
<th>Our Best</th>
<th>Other’s Best</th>
<th>Our Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeroplane</td>
<td>88.1 88.0 87.1 87.7</td>
<td>88.1</td>
<td>86.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Bicycle</td>
<td>68.0 68.6 67.4 67.8</td>
<td>86.6</td>
<td>63.9</td>
<td>4.7</td>
</tr>
<tr>
<td>Bird</td>
<td>68.0 67.9 65.8 68.1</td>
<td>68.1</td>
<td>66.7</td>
<td>1.4</td>
</tr>
<tr>
<td>Boat</td>
<td>72.5 72.9 72.3 71.1</td>
<td>72.9</td>
<td>67.3</td>
<td>5.6</td>
</tr>
<tr>
<td>Bottle</td>
<td>41.0 44.2 40.9 39.1</td>
<td>44.2</td>
<td>43.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Bus</td>
<td>78.9 79.5 78.3 78.5</td>
<td>79.5</td>
<td>74.1</td>
<td>5.4</td>
</tr>
<tr>
<td>Car</td>
<td>70.4 72.5 69.7 70.6</td>
<td>72.5</td>
<td>64.7</td>
<td>7.8</td>
</tr>
<tr>
<td>Cat</td>
<td>70.4 70.8 69.7 70.7</td>
<td>70.8</td>
<td>64.2</td>
<td>6.6</td>
</tr>
<tr>
<td>Chair</td>
<td>58.1 59.5 58.5 57.4</td>
<td>59.5</td>
<td>57.4</td>
<td>2.1</td>
</tr>
<tr>
<td>Cow</td>
<td>53.4 53.6 50.1 51.7</td>
<td>53.6</td>
<td>46.2</td>
<td>7.4</td>
</tr>
<tr>
<td>Diningtable</td>
<td>55.7 57.5 55.1 53.3</td>
<td>57.5</td>
<td>54.7</td>
<td>2.8</td>
</tr>
<tr>
<td>Dog</td>
<td>59.3 59.0 56.3 59.2</td>
<td>59.3</td>
<td>53.5</td>
<td>5.8</td>
</tr>
<tr>
<td>Horse</td>
<td>73.1 72.6 71.8 71.6</td>
<td>73.1</td>
<td>68.1</td>
<td>5.0</td>
</tr>
<tr>
<td>Motorbike</td>
<td>71.3 72.3 70.8 70.6</td>
<td>72.3</td>
<td>70.6</td>
<td>1.7</td>
</tr>
<tr>
<td>Person</td>
<td>84.5 85.3 84.1 84.0</td>
<td>85.3</td>
<td>85.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Pottedplant</td>
<td>32.3 36.6 31.4 30.9</td>
<td>36.6</td>
<td>39.1</td>
<td>-2.5</td>
</tr>
<tr>
<td>Sheep</td>
<td>53.3 56.9 51.5 51.7</td>
<td>56.9</td>
<td>48.2</td>
<td>8.7</td>
</tr>
<tr>
<td>Sheep</td>
<td>56.7 57.9 55.1 55.9</td>
<td>57.9</td>
<td>50.0</td>
<td>7.9</td>
</tr>
<tr>
<td>Train</td>
<td>86.0 85.9 84.7 85.9</td>
<td>86.0</td>
<td>83.4</td>
<td>2.6</td>
</tr>
<tr>
<td>Tvmonitor</td>
<td>66.8 68.0 65.2 66.7</td>
<td>68.0</td>
<td>68.6</td>
<td>-0.6</td>
</tr>
<tr>
<td>Average</td>
<td>65.4 66.5 64.3 64.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accuracy measured by average precision (AP)
Comparative Overview

<table>
<thead>
<tr>
<th>Paradigm</th>
<th>State of the Art</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature Detection</td>
<td>multiple detectors</td>
<td>dense sampling</td>
</tr>
<tr>
<td>Feature Extraction</td>
<td>multiple descriptors</td>
<td>SIFT (gray)</td>
</tr>
<tr>
<td>Coding Scheme</td>
<td>VQ</td>
<td>GMM, LCC</td>
</tr>
<tr>
<td>Spatial Pooling</td>
<td>SPM</td>
<td>SPM</td>
</tr>
<tr>
<td>Classifier</td>
<td>nonlinear classifiers</td>
<td>linear classifiers</td>
</tr>
</tbody>
</table>
Our Strategy

<table>
<thead>
<tr>
<th>Paradigm</th>
<th>State of the Art</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature Detection</td>
<td>multiple detectors</td>
<td>dense sampling</td>
</tr>
<tr>
<td>Feature Extraction</td>
<td>multiple descriptors</td>
<td>SIFT (gray)</td>
</tr>
<tr>
<td>Coding Scheme</td>
<td>VQ</td>
<td>GMM, LCC</td>
</tr>
<tr>
<td>Spatial Pooling</td>
<td>SPM</td>
<td>SPM</td>
</tr>
<tr>
<td>Classifier</td>
<td>nonlinear classifiers</td>
<td>linear classifiers</td>
</tr>
</tbody>
</table>

We bet on machine learning techniques.
Pipeline Overview - 1

Input gray image

- Grid Step Size: every 4 pixels
- Patch Size: 16x16, 24x24, 32x32
- PCA on SIFT: 128 dim -> 80 dim

extract SIFT on a grid of locations

GMM coding & SPM

LCC coding & SPM

Unsupervised codebook learning

linear classifiers

linear classifiers

Submission Entry: NECUIUC_LL-CDCV
 Overall AP=64.29%

Submission Entry: NECUIUC_LN-CDCV
 Overall AP=64.63%
Pipeline Overview - II

Input gray image

- extract SIFT on a grid of locations

GMM coding & SPM

LCC coding & SPM

Fast LCC coding & SPM

Sliding window by object det.

linear classifiers

linear classifiers

linear classifiers

Max pooling

Submission Entry: NECUIUC_CLS-DTCT Overall AP=66.48%

Note: 1. Overall AP is around 58.0%; 2. Overall AP is around 46% (estimation based on 5-fold cross validation)
Prior Publications

• Local Coordinate Coding
 – **Linear Spatial Pyramid Matching Using Sparse Coding for Image Classification**
 Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang, *CVPR 2009*
 – **Nonlinear Learning using Local Coordinate Coding**
 Kai Yu, Tong Zhang, and Yihong Gong, *NIPS 2009*, to appear

• GMM
 – **Hierarchical Gaussianization for Image Classification**
 Xi Zhou, Na Cui, Zhen Li, Feng Liang, and Thomas S. Huang, *ICCV 2009*
 – **SIFT-Bag Kernel for Video Event Analysis**
 Xi Zhou, Xiaodan Zhuang, Shuicheng Yan, Shih-Fu Chang, Mark Hasegawa-Johnson, Thomas S. Huang, *ACM Multimedia 2008*

In our work on PASCAL challenge, we made further extensions of the above work in both engineering and theory.
A Unified Framework

- What matters is to learn nonlinear function on SIFT vectors.
- This boils down to learning a good coding scheme of SIFT.
Coding of SIFT

- Dense SIFT
 - Nonlinear Coding on SIFT
 - Linear Pooling
 - Lin. Classifier
 - cat
Some Notation

\[X \in \mathbb{R}^D \]

\[\Phi(X) : \mathbb{R}^D \rightarrow \mathbb{R}^L \]

\[f(X) : \mathbb{R}^D \rightarrow \mathbb{R} \]

\[\hat{f}(X) = W^\top \Phi(X) \]

- a SIFT feature vector
- encoding function
- unknown function on local features
- approximating function

Supervised Learning Unsupervised Learning
Example 1: Vector Quantization Coding (VQ)

The approximating function is

$$\hat{f}(X) = W^\top \Phi(X),$$

where $W = [W_1, W_2, \ldots, W_K]^\top$, $\Phi(X)$ is the code of X.

If X belongs to class 2, $\Phi(X) = [0, 1, 0, \ldots, 0]^\top$, then $\hat{f}(X) = W^\top \Phi(X) = W_2$.
Example 2: “Supervector” Coding

- Given K clusters in X space, let $W = [W_1^T, W_2^T, \ldots, W_K^T]^T$, where $W_k \in \mathbb{R}^D$, and

$$
\Phi(X) = [C_1(X) \ast X^T, C_2(X) \ast X^T, \ldots, C_K(X) \ast X^T]^T,
$$

with $C_k(X) = 1$ if X belongs to cluster k, otherwise $C_k(X) = 0$.

- Then $\hat{f}(X) = W^\top \Phi(X) = \sum_k C_k(X) \ast W_k^T X$ — a locally piecewise linear function

- $C_k(X)$ can be soft probability given by GMM, then $\Phi(X)$ is GMM supervector.
Example 3: Local Coordinate Coding

Given anchor points \([B_1, \ldots, B_K]\), if the coding scheme \(\Phi(X) = [\phi_1, \ldots, \phi_K]\) satisfies

1. low reconstruction error: \(X \approx \sum_{k=1}^{K} \phi_k B_k;\)
2. good locality: \(\phi_k\) tends to be nonzero if \(B_k\) is in \(X\)'s neighborhood, otherwise 0.

Then \(\hat{f}(X) = W^\top \Phi(X)\) provides a close approximation to \(f(X)\).
LCC: How It Works

\[\hat{f}(X) = \sum_{k=1}^{K} \Phi_k W_k = \sum_{k=1}^{K} \Phi_k \hat{f}(B_k) \text{ forms a local interpolation} \]

\[\Phi(X) = \arg \max_{\Phi} \left\| X - \sum_{k=1}^{K} \Phi_k B_k \right\|^2 + \lambda \sum_{k} \alpha_k(X) |\Phi_k| \]

where \(\alpha_k(X) \) is a distance from \(X \) to \(B_k \).
Comparison of Coding Methods

<table>
<thead>
<tr>
<th></th>
<th>VQ</th>
<th>GMM_SupVec</th>
<th>LCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximation</td>
<td>Poor</td>
<td>Good</td>
<td>Excellent</td>
</tr>
<tr>
<td>Computation</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Locality</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Caltech-101</td>
<td>~65%<sup>1</sup></td>
<td>~73%<sup>2</sup></td>
<td>~73%<sup>3</sup></td>
</tr>
</tbody>
</table>

1. Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce, CVPR, 2006
2. Xi Zhou, Na Cui, Zhen Li, Feng Liang, and Thomas S. Huang, ICCV, 2009
Improve GMM Supervector Coding

– "local linear" → "local nonlinear"
– the code of X is

$$\Phi(X) = \left[C_1(X) \ast (X, X^2)^\top, \ldots, C_K(X) \ast (X, X^2)^\top \right]$$
Improve LCC’s Efficiency

- Pre-computation: partition data and anchor points
- Eliminate those anchor points in different partitions
Equivalent to “Mixture of Coding Experts”

- Use a **soft-max gating function** $G_k(X)$ indicating if X is in local partition k.
- Optimize the following cost

$$
\Phi(X) = \arg \min_\Phi \sum_{k=1}^K G_k(X) \left(\left\| X - \sum_{m=1}^M \Phi_m^{(k)} B_m^{(k)} \right\|^2 + \lambda \sum_m |\Phi_m^{(k)}| \right)
$$

- This is equivalent to

$$
\Phi(X) = \arg \max_\Phi \left\| X - \sum_{k=1}^{M \times K} \Phi_k B_k \right\|^2 + \lambda \sum_{k=1}^{M \times K} \alpha_k(X)|\Phi_k|
$$

where $\alpha_k(X)$ is 1 if X and B_k belong to the same partition, otherwise $+\infty$.
(Local) Linear Pooling

data in an image codes image representation

\[Z_I^{(k)} = \frac{\sum_{i \in I} G_k(X_i) \Phi_{\text{nmlz}}^{(k)}(X_i)}{\sqrt{\sum_{j \in I} G_k(X_j)}} \]

where \(\Phi_{\text{nmlz}}^{(k)}(X) \) is the normalized version of \(\Phi^{(k)}(X) \), obtained by subtracting mean and then dividing by variance.

- The classification function on image \(I \) is

\[c(I) = \sum_{k=1}^{K} W^{(k)^T} Z_I^{(k)} = \sum_{k=1}^{K} \frac{\sum_{i \in I} G_k(X_i) W^{(k)^T} \Phi_{\text{nmlz}}^{(k)}(X_i)}{\sqrt{\sum_{j \in I} G_k(X_j)}} = \sum_{k=1}^{K} \frac{\sum_{i \in I} G_k(X_i) f^{(k)}(X_i)}{\sqrt{\sum_{j \in I} G_k(X_j)}} \]
SPM representation

See also in "SurreyUVA_SRKDA method", presentation at PASCAL VOC workshop 08.
Linear Classifier

Dense SIFT

Nonlinear Coding on SIFT

Linear Pooling

Lin. Classifier

cat
Support Vector Machines

- Use our own implementation, training using gradient based method LBFGS.

\[
\min_{W} \left\{ J(W) = \|W\|^2 + C \sum_{i=1}^{n} \ell(W;Y_i, Z_i) \right\}
\]

- Use a differentiable hinge loss

\[
\ell(W;Y_i, Z_i) = \left[\max \left(0, W^T Z_i \cdot Y_i - 1 \right) \right]^2
\]
Use the **Universeum approach**: if image i is a difficult case, let the loss be

$$\ell(W; Y_i, Z_i) = (W^\top Z_i)^2$$

Weston, Inference with Universeum, ICML 2006
Within-class Covariance Normalization

\[K_{i,j} = Z_i^T (\gamma S + (1 - \gamma) I)^{-1} Z_j \]

where \(S \) is the average within-class covariance matrix.

Weston, Inference with Universum, ICML 2006
Improve SPM using Gaussian Process

- The SPM approach uses 8 linear kernels.
- We can learn the kernel weights.

\[
\min_{\{\alpha_s \geq 0\}} -\log P \left(Y \left| \sum_{s=1}^{8} \alpha_s K_s \right. \right) + \lambda \sum_{s=1}^{8} (\alpha_s - \alpha_0)^2
\]

- We learn a set of global weights for all classes.
Some Details

- Number of partitions or components
 - GMM: 1024 and 2048
 - LCC: 1024 and 2048

- Dimensionality of feature vector for each image (e.g. in case of 1024 partitions)
 - GMM: 1024x80x8 (1024 components, 80 PCA-SIFT, 8 SPM sub kernels)
 - LCC: 1024x256x8 (1024 partitions, 256 codebook size, 8 SPM sub kernels)
Conclusion Remarks

• Highly nonlinear, highly local encoding of image local features make difference!

• Still a long way to go
 – No high-level (semantic) features used so far
 – how to get compact image representations?
 – Supervised training of coding schemes
 – Better methods to use the bounding box information

• More details will be provided in forthcoming TR and papers.