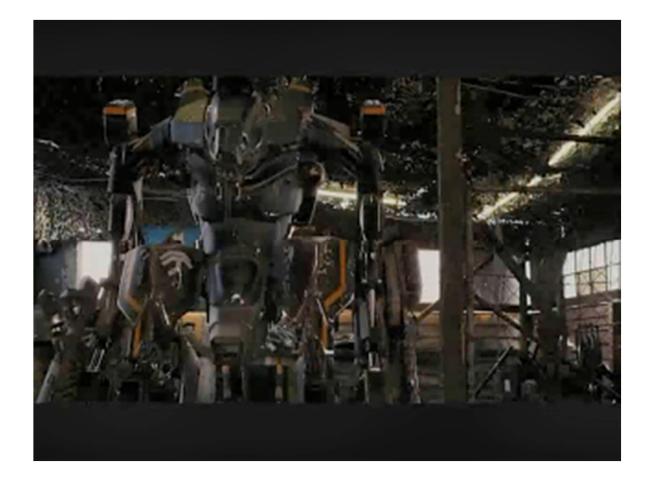
Object Recognition by Sequential Ranking of CPMC Segments

João Carreira¹, Fuxin Li^{2,1}, Cristian Sminchisescu¹ ¹University of Bonn, ²Georgia Institute of Technology

Pascal VOC Challenge 2011 Workshop in Barcelona

Semantic segmentation, alien implementation (from "District 9")



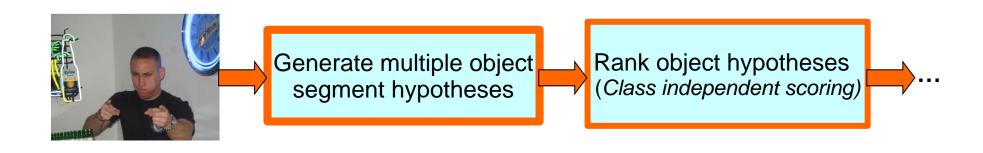
Principles

- Avoid early decision making. Bottom-up processes should produce plausible object segmentation hypotheses with non-local spatial scope, beyond super-pixels
- Exploit mid-level cues. Calculate features over sufficiently large regions, e.g. shape, convexity, orientation
- Take advantage of information in segments covering both entire objects and parts, for recognition

Mechanism: Sliding Segments

- Multiple figure-ground segmentations generated by searching breakpoints of constrained min-cut energies, at multiple locations and scales on image grid (CPMC)
- Plausible object segments are selected after ranking and diversifying the low-level segmentations based on mid-level, class-independent, visual cues
- **Recognition stage** detects objects from the multiple categories and sequentially resolves inconsistencies

Computational pipeline

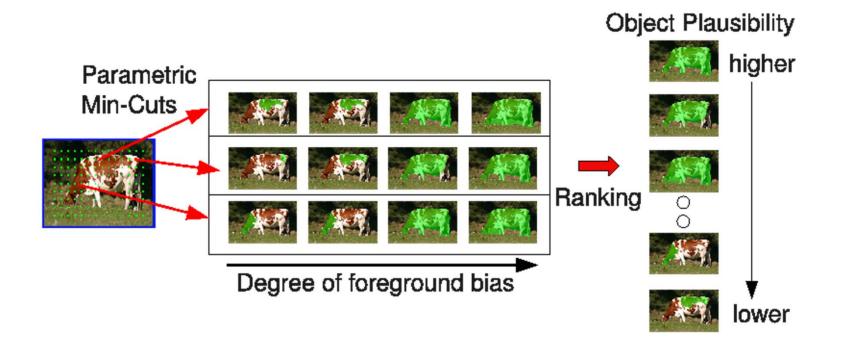


1-against-all class-overlap estimation (instead of classification) of segments Select segment/class with highest score
Consolidate by aggregating multiple high-rank segments with large spatial overlap from the same class

bottle

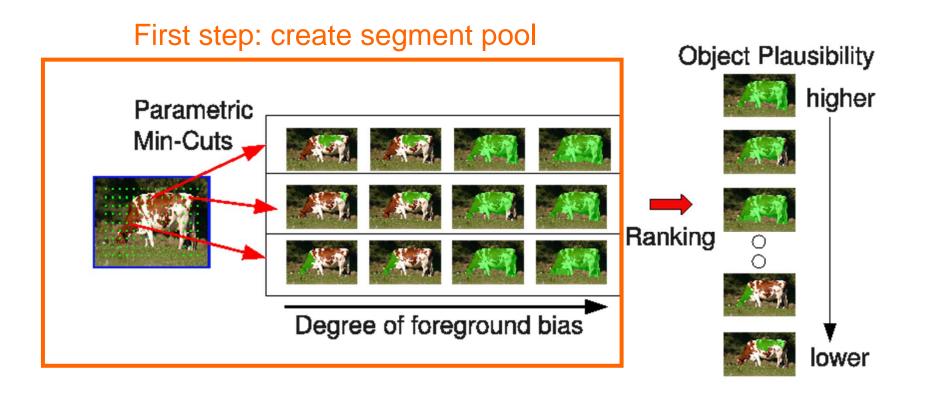
Sequentially add segments

CPMC: Constrained Parametric Min-Cuts for Automatic Object Segmentation

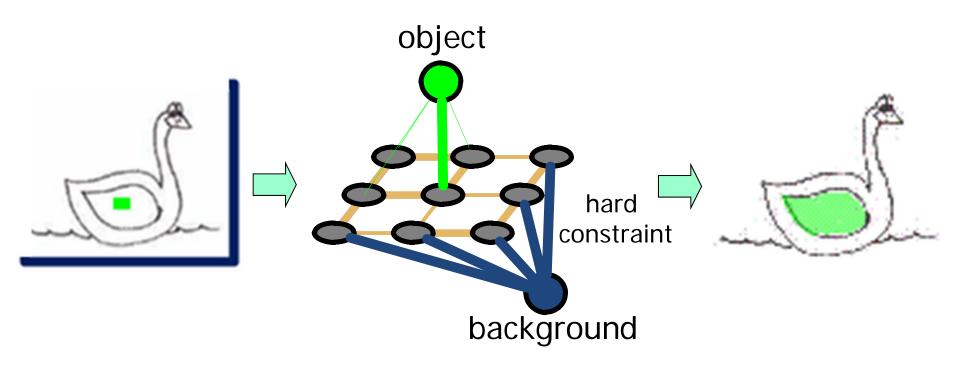


Carreira and Sminchisescu. CVPR 10, PAMI 11

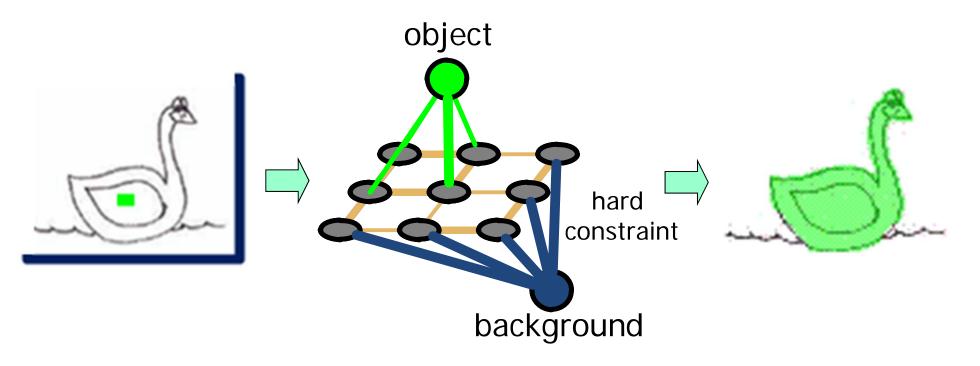
CPMC: Constrained Parametric Min-Cuts for Automatic Object Segmentation



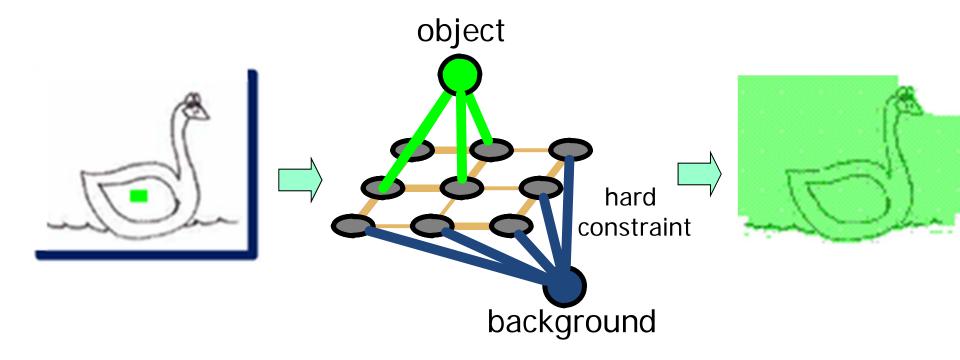
 $E(A) = \lambda \cdot R(A) + B(A)$

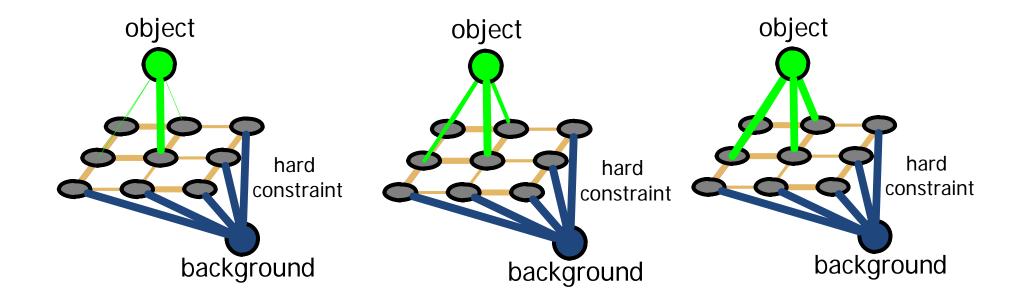


 $E(A) = \lambda \cdot R(A) + B(A)$



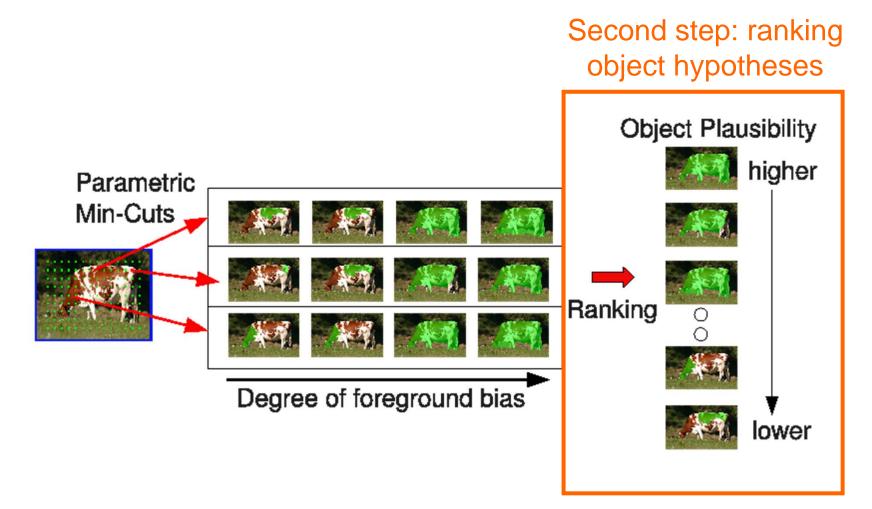
 $E(A) = \lambda \cdot R(A) + B(A)$





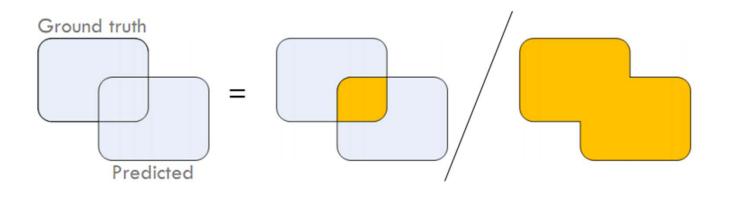
Can solve for all values of object bias in the same time complexity of solving a single min-cut using a **parametric max-flow solver**

CPMC: Constrained Parametric Min-Cuts for Automatic Object Segmentation



How to model segment quality ?

Best **overlap** with a ground truth object computed by intersection-over-union



Ranking object hypotheses

- Aims to handle full object segments and fragments
- Modeled as regression on overlap
- Features
 - Boundary normalized boundary energy
 - Region location, perimeter, area, Euler number, orientation, contrast with background
 - Gestalt convexity, smoothness

High boundary energy

Smooth.

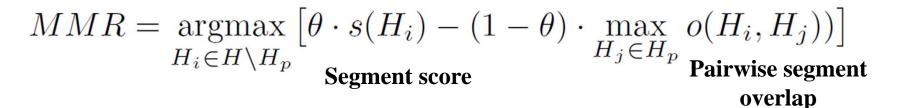
Euler number = 0

Bad

Low boundary energy Non smooth. High Euler number

Diversifying the Ranking

Segment Ranking using Maximum Marginal Relevance



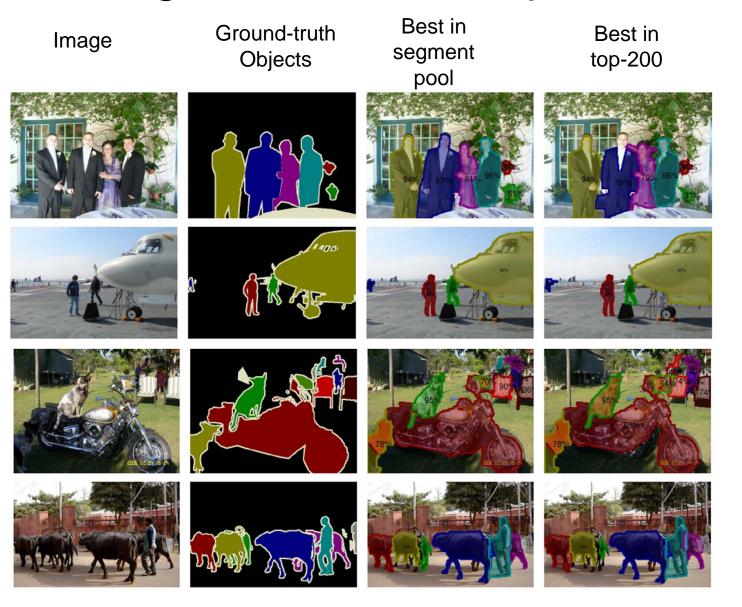
Best two hypotheses Middle two hypotheses

Worst two hypotheses

Original

Diversified

Segmentation Examples



CPMC Segment Generation (video)

Code at http://sminchisescu.ins.uni-bonn.de/cpmc

CPMC Segment Generation (video)

Code at http://sminchisescu.ins.uni-bonn.de/cpmc

Computational pipeline

Generate multiple object segment hypotheses Rank object hypotheses (Class independent scoring)

1-against-all class-overlap estimation (instead of classification) of segments Select segment/class with highest score
Consolidate by aggregating multiple high-rank segments with large spatial overlap from the same class

bottle person

Sequentially add segments

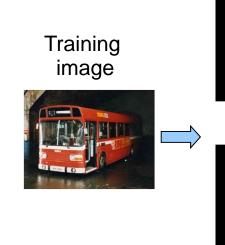
Sliding-Segment Recognition

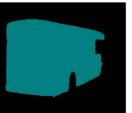
- Each segment categorized by individual class predictors
- Sequential strategy removes inconsistencies and consolidates masks (both spatial support and labels)

Sliding Segments

Prediction of Class-Specific Overlap

- Support Vector **Regression** on class-specific overlap
- 1 Regressor for each class (one against all)
- Negative examples are assigned overlap zero





Bus: 1.2530

Bus: 0.4332

Bus: 0.7462

Bus: 0.2081

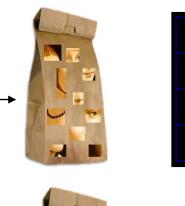
Bus: 0

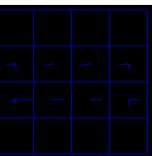
Bus: 0

Li, Carreira and Sminchisescu, CVPR 10, IJCV 11

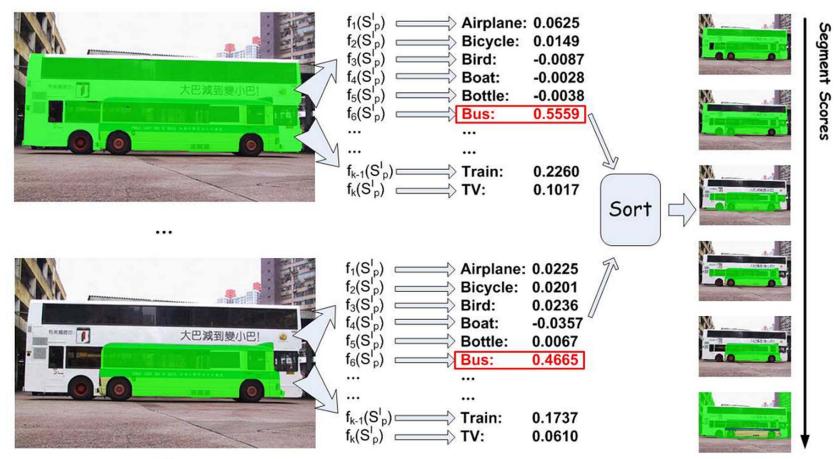
Features

- Extract on both segment foreground and background
- BOW-SIFT, BOW-CSIFT, HOG
- Multiple kernels combined

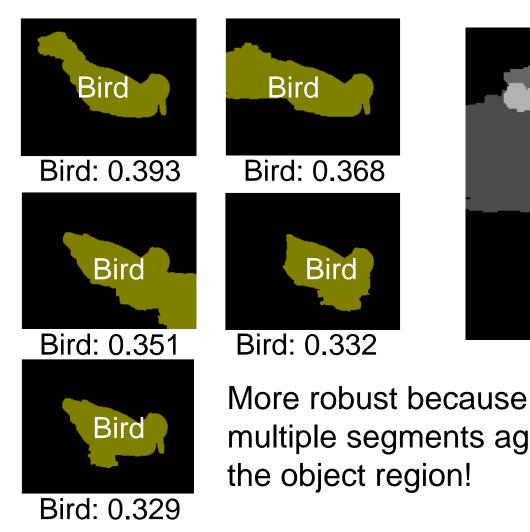




Test on sliding segments



Segment Consolidation Combine highly-overlapping segments.



Bird multiple segments agree on

Segment Consolidation

- Sequential design: The process is performed for the highest-scored overlapping segments, then lower-scored ones
- Object co-occurrence constraints also added
- More robust than non-maximum suppression
 - 2.5% better on VOC10 validation

Results

- VOC 2011 Result: 43.3%, wins 14 out of 21 classes.
 2 methods from Bonn (SVR-SEGM and FGT-SEGM win 20 out of 21 classes (standard challenge)
- Overall with results of challenge 6, we still win 11 classes, despite using less annotations

	moon		aero		bird	haat	bottlo	huc	oor		chai		Dine		horco	motor	person	pot	choon	cofa	train	4 17
	mean	ginu	plane	DIKE	biiu	Dual	DOLLIE	bus v	cai	ιαι		COW	lable	uoy	110136	DIKE	person	plant	sneep	501a	uam	LV
BONN_FGT_SEGM	41.4	83.4	51.7	23.7	46	33.9	49.4	66.25	56.2	41.7	10.4	41.9	29.6	24.4	49.1	50.5	39.6	19.9	44.9	26.1	40	41.6
BONN_SVR_SEGM	43.3	84.9	54.3	23.9	39.5	35.3	42.6	65.45	53.5	46.1	15	47.4	30.1	33.9	48.8	54.4	46.4	28.8	51.3	26.2	44.9	37.2
BROOKES STRUCT																						
_DET_CRF		79.4	36.6	18.6	9.2	11	29.8	59 5	50.3	25.5	11.8	29	24.8	16	29.1	47.9	41.9	16.1	34	11.6	43.3	31.7
NUS CONTEXT SV																						
		77.2	40.5	19	28.4	27.8	40.7	56.4	45	33.1	7.2	37.4	17.4	26.8	33.7	46.6	40.6	23.3	33.4	23.9	41.2	38.6
NUS_SEG_DET_M																						
ASK_CLS_CRF		79.8	41.5	20.2	30.4	29.1	47.4	61.24	47.7	35	8.5	38.3	14.5	28.6	36.5	47.8	42.5	28.5	37.8	26.4	43.5	<mark>45.8</mark>
BERKELEY REGIO																						
N_CLASSIFY	39.1	83.3	48.9	20	32.8	28.2	41.1	53.94	18.3	48	6	34.9	27.5	35	47.2	47.3	48.4	20.6	52.7	25	36.6	35.4

Example Images in Each Category

 Almost perfect

 Correct to an extent

False
 Positive

Example Images in Each Category

- Misclassifications
- Cat Dog

- Misses

 Objects in interaction
 - Detected
 but not
 retained

Example Images in Each Category

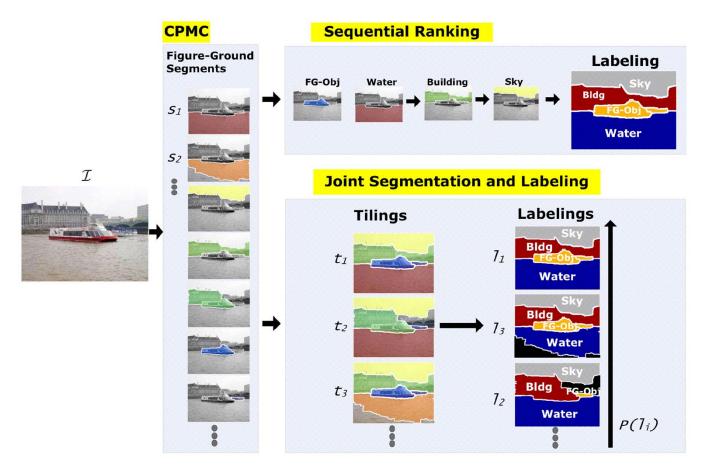
Other misses:

Conclusions

Sequential recognition framework

- Operates with figure-ground segmentations generated by combinatorial optimization (parametric max-flow) with diversified ranking on mid-level features (CPMC)
- Regression on overlap exploits information in both full object segments and fragments
- Sliding segment-based recognition approach with consolidation improves over non-maximum suppression

See also our second entry for Joint Segmentation and Labeling BONN-FGT-SEGM



Ion, Carreira, Sminchisescu, ICCV 11, NIPS 11

Thank you!

CPMC segmentation code is available online at http://sminchisescu.ins.uni-bonn.de/cpmc