Segmentation challenge

 For each pixel, predict the class of the object containing that pixel or 'background'.

- Competition 5: Train on the supplied data
 - Which methods perform best given specified training data?
 - Can use bounding box data as well as seg. data
- Competition 6: Train on any (non-test) data
 - Available since VOC2009
 - Allows for use of own data

Annotation

- Annotation in one session with written guidelines
 - Segmentation is 'refinement' of bounding box (but may go outside it)
 - Segmentation accurate to within 5-pixel boundary region which is marked 'void'

- 1-pixel wide structures (whiskers, wires) can be ignored
- Surface objects considered part of the object (e.g. items on a table)

Example annotations

Image

Object segmentation

Class segmentation

Example annotations

Image

Object segmentation

Class segmentation

Dataset statistics

- Contains VOC2008/9/10/11 data as subsets
- Around 40% increase in objects over VOC2011

	Trair	ning	Testing						
Images	2,913	(2,223)	1,456	(1,111)					
Objects	6,934	(5,034)	3,066	(2,028)					

VOC2011 counts shown in brackets

 Training and test together make exactly 10,000 precisely segmented objects!

Evaluation Metric

Intersection/union of class labels $= \frac{\text{true pos. class}}{\text{true pos. + false pos. + false neg.}}$

- Metric chosen because:
 - Allows per-class participation
 - Penalises both over- and under-estimates
- Overall evaluation metric is average over all classes (including background)

Methods

- 5 entries (comp5) and 3 entries (comp6) from three institutions
- Top methods:
 - Run detection first and refine bounding boxes
 - Superpixel-based Markov Random Field
 - Colour and detector output used as unary
 [Segmentation over Detection by Coupled Global and Local Sparse Representations, ECCV 2012]
 - Extract multiple (overlapping) segmentations
 - Sample consistent (non-overlapping) tilings
 - Region descriptors passed through SVR + combined using second order pooling method to predict class

Example segmentations

Image

BONN_O2PCPMC_FGT_SEGM

Ground truth

NUS_DET_SPR_GC_SP

Example segmentations

Image

Ground truth

BONN_O2PCPMC_FGT_SEGM

NUS_DET_SPR_GC_SP

Example segmentations

Image

BONN_O2PCPMC_FGT_SEGM

Ground truth

NUS_DET_SPR_GC_SP

Example Segmentations

Image

BONN_O2PCPMC_FGT_SEGM

Ground truth

NUS_DET_SPR_GC_SP

Accuracy by class/method

Trained on VOC2011 data (comp5)

	[mean]	back ground	aero plane	bicycle	bird	boat	bottle	Bus	car	cat	chair	cow	dining table	dog	horse	motor bike	person	potted plant	sheep	sofa	train	tv/ Monitor
BONNGC_O2P_CSI	45.4	85.0	59.3	27.9	43.9	39.8	41.4	52.2	61.5	B6.4	13.6	44.5	26.1	42.8	51.7	57.9	51.3	29.8	45.7	28.8	49.9	43.3
BONN_CMBR_O2P_C PMC_LIN	44.8	83.9	60.0	27.3	46.4	40.0	41.7	57.6	59.0	50.4	10.0	41.6	22.3	43.0	51.7	56.8	50.1	33.7	43.7	29.5	47.5	44.7
BONN_O2PCPMC_FGT _SEGM	47.0	85.1	65.4	29.3	51.3	33.4	44.2	59.8	60.3	52.5	13.6	53.6	32.6	40.3	57.6	57.3	49.0	33.5	53.5	29.2	47.6	37.6
NUS_DET_SPR_GC_SP	47.3	82.8	52.9	31.0	39.8	44.5	58.9	60.8	52.5	49.0	22.6	38.1	27.5	47.4	52.4	46.8	51.9	35.7	55.3	40.8	54.2	47.8
UVA_OPT_NBNN_CRF	11.3	63.2	10.5	2.3	3.0	3.0	1.0	30.2	14.9	15.0	0.2	6.1	2.3	5.1	12.1	15.3	23.4	0.5	8.9	3.5	10.7	5.3

Trained on external data (comp6)

	[mean]	back ground	aero plane	bicycle	bird	boat	bottle	bus	car	cat	chair	cow	dining table	dog	horse	motor bike	person	potted plant	sheep	sofa	train	tv/ monitor
BONNGC_O2P_CSI	46.8	85.0	63.6	26.8	45.6	41.7	47.1	54.3	58.6	55.1	14.5	49.0	30.9	46.1	52.6	58.2	53.4	32.0	44.5	34.6	45.3	43.1
BONN_CMBR_O2P_C PMC_LIN	46.7	84.7	63.9	23.8	44.6	40.3	45.5	59.6	58.7	57.1	11.7	45.9	34.9	43.0	54.9	58.0	51.5	34.6	44.1	29.9	50.5	44.5
BONN_O2PCPMC_FGT _SEGM	47.5	85.2	63.4	27.3	56.1	37.7	47.2	57.9	59.3	55.0	11.5	50.8	30.5	45.0	58.4	57.4	48.6	34.6	53.3	32.4	47.6	39.2

- 4% improvement in mean accuracy over last year
- NUS_DET_SPR_GC_SP: 1st in 13 categories in comp5 (11 overall)
- BONN_O2PCPMC_FGT_SEGM: 1st in 9 categories in comp6 (4 overall)

Average precision by class (comp5)

Average precision by class (comp6)

Prizes

- Winner (comp5):
 - NUS_DET_SPR_GC_SP
 Wei Xia, Csaba Domokos, Jian Dong,
 Shuicheng Yan, Loong Fah Cheong
 Zhongyang Huang, Shengmei Shen
 National University of Singapore
 Panasonic Singapore Libraries
- Winner (compó):
 - BONN_(O2PCPMC_FGT_SEGM)
 João Carreira, Adrian Ion, Fuxin Li,
 Cristian Sminchisescu
 University of Bonn

Challenge website

Complete results available for viewing at

```
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/
```

Action classification taster challenge

 Given the bounding box of a person, predict whether they are performing a given action

Playing Instrument?

Reading?

 Encourage research on still-image activity recognition: more detailed understanding of image

Ten action classes + "Other"

Jumping

Riding Horse

Phoning

Running

Playing Instrument

Taking Photo

Reading

Using Computer

Riding Bike

Walking

Dataset statistics

Around 90% increase in size over VOC 2011.

	Training	Testing
Actions	5303	5292

- Minimum ~400 people per action category
- Only subset of people are annotated
- Actions are not mutually-exclusive

Submitted methods

- 4 methods, 4 groups
 - VOC2011: 10 methods, 6 groups...

Average precision by action (comp9)

Average precision by action (comp 10)

AP by class and method

STANFORD_RF_MULTFEAT_SVM SZU_DPM_RF_SVM

Trained on external data

HU_BU_SVM_HOG
OXFORD ALIGNED BODYPARTS

Precision/recall curves (riding horse)

Precision/recall curves (riding horse)

Precision/recall curves (running)

Precision/recall curves (running)

Precision/recall curves (using computer)

Precision/recall curves (using computer)

Precision/recall curves (reading)

Precision/recall curves (reading)

Median average precision by method

Median average precision by method

Prizes

Winner (comp9)

STANFORD_RF_MULTFEAT_SVM

Aditya Khosla, Rui Zhang, Bangpeng Yao, Li Fei-Fei

Stanford University
MIT

- Winner (comp 10)
 - OXFORD_ALIGNED_BODYPARTS

Minh Hoai,

Lubor Ladicky,

Andrew Zisserman

University of Oxford

Comp 9, bird's eye view

Discriminative Random Forest

[B. Yao*, A. Khosla*, and L. Fei-Fei, "Combining Randomization and Discrimination for Fine-Grained Image Categorization." CVPR 2011]

Combining multiple features (more than '11)

Greedy Tree Selection (2nd change from '11)

Comp 10, bird's eye view

Action Recognition from Still Images by Aligning Body Parts

Minh Hoai, Lubor Ladicky, Andrew Zisserman
University of Oxford

Outline

Human focussed approach

- Bbox-aligned features
- Upper-body & hands
- Silhouette and segmentation-based features

Also use image classification and object detection Final score: SVM with MKL

Bbox-aligned Features

Get regions at relative locations

Compute features + kernels

Spatial pyramid of Dense SIFTs

HOG descriptors

Detection-aligned features

Detect upper-body and hands

Keep the upper-body and extend the hand regions

Compute features + kernels

SIFT + HOG descriptors

Using Segmentation

Location Features

Start with ground truth (gt) bbox and upperbody, hand locations

Compute features + kernel

.8

Relative location b/t gt bbox and entire image

Relative location b/t upperbody and gt bbox

Relative location b/t left-hand and gt bbox

Relative location b/t right-hand and gt bbox

Latent SVM models

- Train an LSVM model for each action class:
 - 3 components (i.e., 6 if we count left-right mirror)
 - 8 deformable parts
- Obtain 20 pre-trained object detectors
 - LSVM models trained on VOC2009
 - Bundled with LSVM 4.0.1
- Obtain 16 musical instrument detectors
 - LSVM models trained on ImageNet

Using Detection Scores

Run detector and record highest scores

Body layout challenge

- 1 submission, but only detecting heads
 - Hence no prize is awarded for this taster challenge this year